A. | (0,+∞) | B. | ($\frac{1}{2}$,+∞}) | C. | ($\sqrt{2}$,+∞) | D. | ($\frac{{\sqrt{2}}}{2}$,+∞) |
分析 從棱錐頂點向底面正方形中心引一輔助線,該輔助線垂直底面,輔助線、側(cè)棱與正方形對角線的一半構(gòu)成直角三角形,
側(cè)棱為斜邊;根據(jù)直角三角形中的邊角關(guān)系即可求出k的取值范圍.
解答 解:如圖所示,
設(shè)正四棱錐V-ABCD底面中心為O,BC=a,
則VB=ka,易知OB=$\frac{\sqrt{2}}{2}$a;
在Rt△VOB中,cos∠VBO=$\frac{\frac{\sqrt{2}}{2}a}{ka}$=$\frac{\sqrt{2}}{2k}$,
∵∠VBO∈(0,$\frac{π}{2}$),
∴0<$\frac{\sqrt{2}}{2k}$<1,
∴$\left\{\begin{array}{l}{k>0}\\{2k>\sqrt{2}}\end{array}\right.$,
解得k>$\frac{\sqrt{2}}{2}$;
∴k的取值范圍是($\frac{\sqrt{2}}{2}$,+∞).
點評 本題考查了正四棱錐的結(jié)構(gòu)特征的應(yīng)用問題,也考查了空間想象能力與邏輯推理能力,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2e | B. | ${e^{\frac{π}{2}}}$ | C. | e | D. | 2${e^{\frac{π}{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)在區(qū)間($\frac{π}{2},π$)內(nèi)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
B. | 函數(shù)f(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{2}$對稱 | |
C. | 函數(shù)f(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
D. | 函數(shù)f(x)在區(qū)間($\frac{π}{2},π$)內(nèi)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{2}$對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 600人 | B. | 800人 | C. | 900人 | D. | 1000人 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2015}$ | B. | 1+$\frac{1}{2!}$+$\frac{1}{3!}$+…+$\frac{1}{2015!}$ | ||
C. | 1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2016}$ | D. | 1+$\frac{1}{2!}$+$\frac{1}{3!}$+…+$\frac{1}{2016!}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com