A. | -2<m<4 | B. | -4<m<2 | C. | 2<m<4 | D. | -4<m<4 |
分析 將不等式2y2+8x2-(m2-2m)xy>0恒成立轉(zhuǎn)化為m2-2m<($\frac{2y}{x}$+$\frac{8x}{y}$)min,利用基本不等式可求得($\frac{2y}{x}$+$\frac{8x}{y}$)min,再解不等式m2-2m<8即可得到答案.
解答 解:2y2+8x2-(m2-2m)xy>0恒成立?m2-2m<$\frac{{2y}^{2}+{8x}^{2}}{xy}$=$\frac{2y}{x}$+$\frac{8x}{y}$恒成立?m2-2m<($\frac{2y}{x}$+$\frac{8x}{y}$)min,
x>0,y>0,$\frac{2y}{x}$+$\frac{8x}{y}$≥2$\sqrt{\frac{2y}{x}•\frac{8x}{y}}$=8(當(dāng)且僅當(dāng)y=2x時取等號),
即($\frac{2y}{x}$+$\frac{8x}{y}$)min=8,
所以,m2-2m<8,
解得:-2<m<4,
故選:A.
點評 本題考查函數(shù)恒成立問題,分離參數(shù)是關(guān)鍵,考查等價轉(zhuǎn)化思想與基本不等式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-$\frac{1}{x}$ | B. | y=-log2x | C. | y=3x | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$ | B. | 向右平移$\frac{π}{3}$ | C. | 向左平移$\frac{π}{6}$ | D. | 向右平移$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com