【題目】已知.
(1)解關(guān)于的不等式;
(2)若不等式的解集為,求實數(shù)的值.
【答案】(1);(2).
【解析】試題分析:(1)由f(1)=-3+a(6-a)+6=-a2+6a+3,得a2-6a-3<0,求解即可;
(2)f(x)>b的解集為(-1,3)等價于方程-3x2+a(6-a)x+6-b=0的兩根為-1,3,由根與系數(shù)的關(guān)系求解即可.
試題解析:
(1)∵f(x)=-3x2+a(6-a)x+6,
∴f(1)=-3+a(6-a)+6=-a2+6a+3,
∴原不等式可化為a2-6a-3<0,解得3-2<a<3+2.
∴原不等式的解集為{a|3-2<a<3+2}
(2)f(x)>b的解集為(-1,3)等價于方程-3x2+a(6-a)x+6-b=0的兩根為-1,3,
等價于解得.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(其中,,)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最高點為.
(1)求的解析式;
(2)先把函數(shù)的圖象向左平移個單位長度,然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,試寫出函數(shù)的解析式.
(3)在(2)的條件下,若存在,使得不等式成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】同時拋擲兩枚骰子,并記下二者向上的點數(shù),求:
二者點數(shù)相同的概率;
兩數(shù)之積為奇數(shù)的概率;
二者的數(shù)字之和不超過5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動圓M的圓心的軌跡方程為( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國齊心抗擊疫情,基本上控制住了疫情.下圖為月日至月日我國新型冠狀病毒肺炎全國總新增確診人數(shù)和新增境外輸入確診人數(shù)趨勢圖(數(shù)據(jù)來源:國家衛(wèi)健委官網(wǎng)),則下列表述中錯誤的是( )
A.3月上旬全國總新增確診人數(shù)呈波動下降趨勢.
B.3月中下旬全國總新增確診人數(shù)開始反彈的主要原因是境外輸入病例的增加.
C.全國總新增確診人數(shù)隨著境外輸入確診人數(shù)變化而變化.
D.4月中下旬國內(nèi)新增確診人數(shù)呈越來越少的趨勢.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)的一條對稱軸是;
②函數(shù)的圖象關(guān)于點(,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若,則,其中
以上四個命題中正確的有 (填寫正確命題前面的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修44:坐標系與參數(shù)方程]
在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為(
為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標
方程是.
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)已知點.若點的極坐標為,直線經(jīng)過點且與曲線相交于兩點,求兩點間的距離的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù) .若曲線在點處的切線方程為(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)的定義域為,若存在常數(shù),使對一切實數(shù)均成立,則稱為“倍約束函數(shù)”現(xiàn)給出下列函數(shù):;;;是定義在實數(shù)集上的奇函數(shù),且對一切,均有其中是“倍約束函數(shù)”的序號是
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com