分析 設(shè)$\overrightarrow$=(x,y),根據(jù)平面向量數(shù)量積的定義轉(zhuǎn)化為圓的方程,利用兩點(diǎn)間的距離公式,利用數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:設(shè)$\overrightarrow$=(x,y),
則由$\overrightarrow{a}$-$\overrightarrow$=(5-x,12-y),
∵|$\overrightarrow{a}$-$\overrightarrow$|=3,
∴|$\overrightarrow{a}$-$\overrightarrow$|2=9,
即(5-x)2+(12-y)2=9,
即(x-5)2+(y-12)2=9,
則|$\overrightarrow$|=$\sqrt{{x}^{2}+{y}^{2}}$,
則|$\overrightarrow$|的幾何意義為圓上的點(diǎn)到原點(diǎn)的距離,
則|OC|=$\sqrt{{5}^{2}+1{2}^{2}}$=13,
則|$\overrightarrow$|=$\sqrt{{x}^{2}+{y}^{2}}$的最大值為|0C|+3=13+3=16,
最小值為|0C|-3=13-3=10,
即|$\overrightarrow$|的取值范圍為[10,16],
故答案為:[10,16],
點(diǎn)評(píng) 本題主要考查平面數(shù)量積的應(yīng)用,根據(jù)條件轉(zhuǎn)化為點(diǎn)與圓的關(guān)系,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |x+1|≤a | B. | |x+1|≤a+1 | C. | |x+1|≤a-1 | D. | |x-1|≤a-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {β|β=-$\frac{π}{4}$} | B. | {β|β=$\frac{3π}{4}$} | C. | {β|β=-$\frac{π}{4}$或$\frac{3π}{4}$} | D. | {β|β=$\frac{3π}{4}$+kπ,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{5}{2}$ | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com