11.設(shè)a2+b2=1,x2+y2=4,則ax+by的最大值是(  )
A.2B.$\frac{5}{2}$C.4D.8

分析 先根據(jù)柯西不等式可知(a2+b2)(x2+y2)≥(ax+by)2,進(jìn)而的求得(ax+by)2的最大值,進(jìn)而求得ax+by的最大值.

解答 解:因?yàn)閍2+b2=1,x2+y2=4,
由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得:
4≥(ax+by)2,當(dāng)且僅當(dāng)ay=bx時(shí)取等號(hào),
所以ax+by的最大值為2.
故選:A.

點(diǎn)評(píng) 本題主要考查了柯西不等式在最值問題中的應(yīng)用.解題的關(guān)鍵是利用了柯西不等式,達(dá)到解決問題的目的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.袋中有2個(gè)紅色的變形金剛,2個(gè)白色的變形金剛,2個(gè)黑色的變形金剛,從里面任意取2個(gè)變形金剛,不是基本事件的為(  )
A.{恰好2個(gè)紅色的變形金剛}(cāng)B.{恰好2個(gè)黑色的變形金剛}(cāng)
C.{恰好2個(gè)白色的變形金剛}(cāng)D.{至少1個(gè)紅色的變形金剛}(cāng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,若0≤ax+by≤2,則$\frac{b+2}{a+1}$的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\overrightarrow{a}$=(5,12),|$\overrightarrow{a}$-$\overrightarrow$|=3,則|$\overrightarrow$|的取值范圍為[10,16].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:$\frac{1}{x-1}$<1,q:x2+(a-1)x-a>0,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍是( 。
A.(-2,-1]B.[-2,-1]C.[-3,-1]D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z=m2-1+(m2-m-2)i分別是:
①實(shí)數(shù)?
②虛數(shù)?
③純虛數(shù)?
(2)已知$\frac{m}{1+i}$=1-ni,(m、n∈R,i是虛數(shù)單位),求m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知i是虛數(shù)單位,則復(fù)數(shù)z=$\frac{4+3i}{1+2i}$的虛部為(  )
A.-iB.11C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若三角形三邊分別為AB=7,BC=5,AC=6,則$\overrightarrow{BA}•\overrightarrow{BC}$=(  )
A.19B.18C.-18D.-19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求函數(shù)f(x)=sin(x+$\frac{π}{3}$)+2sin(x-$\frac{π}{3}$)的周期及單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案