【題目】已知函數(shù),點是函數(shù)圖象上不同的兩點,則為坐標(biāo)原點)的取值范圍是( 。

A. B.

C. D.

【答案】A

【解析】

根據(jù)分段函數(shù)的表達(dá)式,分別求出對應(yīng)切線和雙曲線漸近線的傾斜角,結(jié)合位置關(guān)系判斷∠AOB的大小即可.

當(dāng)x0時,y=,則y2=1+x2,當(dāng)時,,作出函數(shù)圖象:

當(dāng)x0時,y=,則y2=1+x2,

,為雙曲線在第二象限的一部分,

雙曲線的漸近線方程為

B在雙曲線上,則∠BOy的范圍是0<∠BOy,

設(shè)當(dāng)x≥0時,過原點的切線與fx=x2+1,相切,

設(shè)切點為,

f′x=x,即切線斜率k=a

則切線方程為

∵切線過原點,

,

,

=1,即=,則=,

則切線斜率,即切線傾斜角為

則∠AOy的最大值為,

即0≤∠AOy≤

0<∠AOy+BOy,

0<∠AOB,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過點且傾斜角為.

1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;

2)已知直線與曲線交于,滿足的中點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求函數(shù)處的切線方程;

,處導(dǎo)數(shù)相等,證明:.

若對于任意,直線與函數(shù)圖象都有唯一公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求證:函數(shù)是偶函數(shù);

(2)設(shè),求關(guān)于的函數(shù)時的值域的表達(dá)式;

(3)若關(guān)于的不等式時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為多面體,平面與平面垂直,點在線段上, 都是正三角形.

(1)證明:直線∥面;

(2)在線段上是否存在一點,使得二面角的余弦值是,若不存在請說明理由,若存在請求出點所在的位置。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國大學(xué)生機器人大賽是由共青團(tuán)中央,全國學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創(chuàng)的機器人競技平臺.全國大學(xué)生機器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現(xiàn)的是個人實力以及整個團(tuán)隊的力量.2015賽季共吸引全國240余支機器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴(yán)格篩選,最終由111支機器人戰(zhàn)隊參與到2015年全國大學(xué)生機器人大賽的激烈角逐之中,某大學(xué)共有“機器人”興趣團(tuán)隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團(tuán)隊,現(xiàn)用分層抽樣的方法,從以上團(tuán)隊中抽取20個團(tuán)隊.

(1)應(yīng)從大三抽取多少個團(tuán)隊?

(2)將20個團(tuán)隊分為甲、乙兩組,每組10個團(tuán)隊,進(jìn)行理論和實踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強化訓(xùn)練,備戰(zhàn)機器人大賽.

(i)從統(tǒng)計學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

(ii)從乙組中不低于140分的團(tuán)隊中任取兩個團(tuán)隊,求至少有一個團(tuán)隊為144分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,,的中點,沿折起,使得點到點位置,且,的中點,上的動點(與點,不重合).

)證明:平面平面垂直;

)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場有6名特約嘉賓給每位參賽選手評分,場內(nèi)外的觀眾可以通過網(wǎng)絡(luò)平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓評分情況如下表;場內(nèi)外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,分組,繪成頻率分布直方圖如下:

嘉賓

評分

96

95

96

89

97

98

1)從觀眾中任取三人,求這三人中恰有1人分?jǐn)?shù)在2人分?jǐn)?shù)在的概率;

2)從嘉賓中隨機選3人,記3人中分?jǐn)?shù)不低于96分的人數(shù)為,求的期望;

3)嘉賓評分的平均數(shù)為,場內(nèi)外的觀眾評分的平均數(shù)為,試寫出的大小關(guān)系(不需要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】維生素C又叫抗壞血酸,是一種水溶性維生素,是高等靈長類動物與其他少數(shù)生物的必需營養(yǎng)素.維生素C雖不直接構(gòu)成腦組織,也不向腦提供活動能源,但維生素C有多種健腦強身的功效,它是腦功能極為重要的營養(yǎng)物.維生素C的毒性很小,但食用過多仍可產(chǎn)生一些不良反應(yīng).根據(jù)食物中維C的含量可大致分為:含量很豐富:鮮棗、沙棘、獼猴桃、柚子,每100克中的維生素C含量超過100毫克;比較豐富:青椒、桂圓、番茄、草莓、甘藍(lán)、黃瓜、柑橘、菜花,每100克中維生素C含量超過50毫克;相對豐富:白菜、油菜、香菜、菠菜、芹菜、莧菜、菜苔、豌豆、豇豆、蘿卜,每100克中維生素C含量超過30~50毫克.現(xiàn)從獼猴桃、柚子兩種食物中測得每100克所含維生素C的量(單位:)得到莖葉圖如圖所示,則下列說法中不正確的是(

A.獼猴桃的平均數(shù)小于柚子的平均數(shù)

B.獼猴桃的方差小于柚子的方差

C.獼猴桃的極差為32

D.柚子的中位數(shù)為121

查看答案和解析>>

同步練習(xí)冊答案