11.在△ABC中,a,b,c分別為角A,B,C的對邊,若asinAsinB+bcos2A=$\sqrt{3}$a,則$\frac{a}$=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$2\sqrt{3}$D.3

分析 利用正弦定理化簡已知的等式,整理后利用同角三角函數(shù)間的基本關(guān)系化簡,得到sinB=$\sqrt{3}$sinA,再利用正弦定理化簡,即可得到所求式子的值.

解答 解:由正弦定理化簡已知的等式得:sin2AsinB+sinBcos2A=$\sqrt{3}$sinA,
即sinB(sin2A+cos2A)=$\sqrt{3}$sinA,
∴sinB=$\sqrt{3}$sinA,
再由正弦定理得:b=$\sqrt{3}$a,
則$\frac{a}$=$\sqrt{3}$.
故選:B.

點(diǎn)評 此題考查了正弦定理,同角三角函數(shù)間的基本關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,AB是⊙O的直徑,C、F是⊙O上的兩點(diǎn),OC⊥AB,過點(diǎn)F作⊙O的切線FD交AB的延長線于點(diǎn)D,連接CF交AB于點(diǎn)E.
(1)求證:DF=DE;
(2)若DB=2,DF=4,求⊙O的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a,b是函數(shù)f(x)=x2-mx+n(m>0,n>0)的兩個(gè)不同的零點(diǎn),且a,b,-4這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則m+n=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知|$\overrightarrow a}$|=|${\overrightarrow b}$|=|${\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等式組$\left\{\begin{array}{l}{x+y-2≥0}\\{x+2y-4≤0}\\{x+3y-2≥0}\end{array}\right.$表示的平面區(qū)域的面積為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.兩個(gè)平面互相垂直,下列說法中正確的是( 。
A.一個(gè)平面內(nèi)的任一條直線必垂直于另一個(gè)平面
B.分別在這兩個(gè)平面內(nèi)且互相垂直的兩直線,一定分別與另一平面垂直
C.過其中一個(gè)平面內(nèi)一點(diǎn)作與它們交線垂直的直線,必垂直于另一個(gè)平面
D.一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的無數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-2x,g(x)=mx+2,?x1∈[-2,2],?x2∈[-2,2],使得g(x1)=f(x2),則m的取值范圍是[-$\frac{3}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且f(x)=f′($\frac{π}{6}$)cosx+sinx,則f′($\frac{π}{3}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上隨機(jī)取一個(gè)數(shù)x,則(sinx-cosx)∈[-$\sqrt{2}$,-1]的概率是$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案