家政服務(wù)公司根據(jù)用戶滿意程度將本公司家政服務(wù)員分為兩類,其中A類服務(wù)員12名,B類服務(wù)員x名.
(1)若采用分層抽樣的方法隨機抽取20名家政服務(wù)員參加技術(shù)培訓(xùn),抽取到B類服務(wù)員的人數(shù)是16,求x的值.
(2)某客戶來公司聘請2名家政服務(wù)員,但是由于公司人員安排已接近飽和,只有3名A類家政服務(wù)員和2名B類家政服務(wù)員可供選擇,求該客戶最終聘請的家政服務(wù)員中既有A類又有B類的概率.
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(1)根據(jù)分層抽樣即可求的x的值,
(2)列舉出所有的可能,找到滿足最終聘請的家政服務(wù)員中既有A類又有B類的情況,根據(jù)古典概率公式計算即可.
解答: 解:(1)20-16=4,由
4
12
x=16
,可得x=48,
(2)設(shè)3名A類服務(wù)員的編號為A,B,C,2名B類服務(wù)員的編號為1,2.
則所有的可能情況有(A,B),(A,C),(A,1),(A,2),(B,C,),(B,1),(B,2),(C,1),(C,2),(1,2)共10種選擇,
該客戶最終聘請的家政服務(wù)員中既有A類又有B類的情況共有(A,1),(A,2),(B,1),(B,2),(C,1),(C,2)共6種情況
故該客戶最終聘請的家政服務(wù)員中既有A類又有B類的概率P=
6
10
=
3
5
點評:本題主要考查了分層抽樣和古典概率的問題,關(guān)鍵是一一列舉所有的基本事件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},
(1)求∁UA,A∩(∁UB);
(2)若C={x|1-a≤x≤2a+1},且C⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2ax+2.
(1)當(dāng)a=-1時,求函數(shù)f(x)在[-5,5]上的最小值;
(2)當(dāng)a=-1時,函數(shù)的定義域和值域均為[1,b](b>1),求b;
(3)若y=f(x)在區(qū)間[-5,5]上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(n)=
   n    (n∈N*,n為奇數(shù))
f(
n
2
)  (n∈N*,n為偶數(shù))
,an=f(1)+f(2)+f(3)+…+f(2n)(n∈N*
(1)求a1,a2,a3的值;
(2)寫出an與an-1的一個遞推關(guān)系式,并求出an關(guān)于n的表達式;
(3)設(shè)數(shù)列{bn}的通項為bn=log2(3an-2)-10(n∈N*),前n項和為Sn.整數(shù)103是否為數(shù)列{bn•Sn}中的項:若是,則求出相應(yīng)的項數(shù);若不是,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點P到兩定點M(-1,0),N(1,0)距離之比為
2

(1)求動點P軌跡C的方程;
(2)若過點N的直線l被曲線C截得的弦長為2
6
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|m<x<2m-1,m∈R},B={x|x∈(-∞,2)∪[4,+∞)},若A∩B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)(x∈D)同時滿足以下條件:
①它在定義域D上是單調(diào)函數(shù);
②存在區(qū)間[a,b]?D使得f(x)在[a,b]上的值域也是[a,b],我們將這樣的函數(shù)稱作“A類函數(shù)”.
(1)已知函數(shù)f(x)=2x-2x.x∈(0,+∞),求證:f(1)=f(2);
(2)函數(shù)f(x)=2x-2x.x∈(0,+∞)是不是“A類函數(shù)”?如果是,試找出[a,b];如果不是,試說明理由;
(3)求使得函數(shù)f(x)=12x-kx+1,x∈(0,+∞)是“A類函數(shù)”的常數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,且滿足an-an-1=n(n>1).
(Ⅰ)求a2,a3及數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
1
an
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3x
+1在x=0處的切線方程是
 

查看答案和解析>>

同步練習(xí)冊答案