分析 曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為:x2+y2-$\frac{3}{2}$x-$\frac{3\sqrt{3}}{2}$y=0,是以r=$\frac{3}{2}$為半徑的圓,曲線$ρ=3cos({θ-\frac{π}{3}})$上任意兩點(diǎn)間的距離的最大值為2r,由此能求出結(jié)果.
解答 解:曲線$ρ=3cos({θ-\frac{π}{3}})$,即$ρ=\frac{3}{2}cosθ+\frac{3\sqrt{3}}{2}sinθ$,
∴${ρ}^{2}=\frac{3}{2}ρcosθ+\frac{3\sqrt{3}}{2}ρsinθ$,
化為直角坐標(biāo)方程為:x2+y2-$\frac{3}{2}$x-$\frac{3\sqrt{3}}{2}$y=0,
由以r=$\frac{1}{2}\sqrt{\frac{9}{4}+\frac{27}{4}}$=$\frac{3}{2}$為半徑的圓,
∴曲線$ρ=3cos({θ-\frac{π}{3}})$上任意兩點(diǎn)間的距離的最大值為2r=3.
故答案為:3.
點(diǎn)評 本題考查曲線上任意兩點(diǎn)間的距離的最大值的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、的互化、圓的性質(zhì)等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,2) | C. | (0,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P在曲線C上,Q不在曲線C上 | B. | P、Q都不在曲線C上 | ||
C. | P不在曲線C上,Q在曲線C上 | D. | P、Q都在曲線C上 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=4x | B. | y2=2x | C. | y2=-4x | D. | y2=-8x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com