2.一個幾何體由多面體和旋轉(zhuǎn)體的整體或一部分組合而成,其三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{3}{2}$πB.π+1C.π+$\frac{1}{6}$D.π

分析 由三視圖知該幾何體是組合體:左邊是直三棱柱、右邊是半個圓柱,由三視圖求出幾何元素的長度,由柱體的體積公式求出幾何體的體積.

解答 解:根據(jù)三視圖可知幾何體是組合體:左邊是直三棱柱、右邊是半個圓柱,
直三棱柱的底面是等腰直角三角形,直角邊是1,側(cè)棱長是2,
圓柱的底面半徑是1,母線長是2,
∴該幾何體的體積V=$\frac{1}{2}×1×1×2+\frac{1}{2}×π×{1}^{2}×2$
=π+1,
故選:B.

點評 本題考查由三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.某工廠生產(chǎn)某種產(chǎn)品的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)有如表幾組樣本數(shù)據(jù):
 x 3 4 5 6
 y 2.5 3 m 4.5
據(jù)相關(guān)性檢驗,這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,求得其回歸方程是$\stackrel{∧}{y}$=0.7x+0.35,則實數(shù)m的值為  ( 。
A.3.5B.3.85C.4D.4.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.求方程6sin2x-4sin2x=-1,x∈[0,π]的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已數(shù)列的前n項和為Sn,且滿Sn-1-Sn=2Sn•Sn-1(n∈N*,n≥2),a1=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{S}_{n}}$,Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$,若Tn<2m-1對任意的正整數(shù)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=ex-e-x+1(e為自然對數(shù)的底數(shù)).若f(a)+f(a-2)<2,則實數(shù)a的取值范圍是(  )
A.a<1B.a<2C.a>1D.a>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{k}^{2}x+k(1-{a}^{2}),x≥0}\\{{x}^{2}+({a}^{2}-6a+8)x+(3-a)^{2},x<0}\end{array}\right.$,其中a∈R.若對任意的非零實數(shù)x1,存在唯一的非零實數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則k的取值范圍是k<0或k≥8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.f(x)=$\left\{{\begin{array}{l}{\frac{1}{2}}&{(-1≤x≤1)}\\{\frac{1}{2}x}&{(1<x≤4)}\end{array}}$.
(1)用直尺或三角板畫出y=f(x)的圖象;
(2)求f(x)的最小值和最大值以及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=(sinx+$\sqrt{3}$cosx,-$\frac{3}{2}$),g(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)當x∈[0,π]時,求函數(shù)g(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)g(x)的圖象向左平移$\frac{π}{6}$個單位,再橫坐標伸長為原來的2倍,縱坐標伸長為原來的4倍,向下平移兩個單位后,得到f(x)的圖象,求f(x)的最大值,及取得最大值時x的集合;
(3)若a,b,c是△ABC的內(nèi)角A,B,C的對邊,對定義域內(nèi)任意x,有f(x)≤f(A),若a=$\sqrt{3}$.求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)的一個焦點為F(-1,0),左右頂點分別為A,B,經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

同步練習冊答案