11.tan$\frac{7π}{6}$的值為( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

分析 直接利用誘導(dǎo)公式化簡求解即可.

解答 解:tan$\frac{7π}{6}$=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.
故選:B.

點(diǎn)評 本題考查誘導(dǎo)公式的應(yīng)用,特殊角的三角函數(shù)求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.點(diǎn)A(1,-2)關(guān)于原點(diǎn)對稱的對稱點(diǎn)到(3,m)的距離是2$\sqrt{5}$,則m的值是-2或6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.有下列命題:
①若f(x)存在導(dǎo)函數(shù),則f'(2x)=[f(2x)]';
②若g(x)=(x-1)(x-2)…(x-2013),則g'(2013)=2012!;
③若函數(shù)y=f(x)滿足f′(x)>f(x),則當(dāng)a>0時,f(a)>eaf(0);
④若f(x)=ax3+bx2+cx+d,則a+b+c=0是f(x)有極值點(diǎn)的充要條件.
其中正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,網(wǎng)格上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的各條棱中,最長的棱的長度為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)是(0,+∞)上的增函數(shù),若f[f(x)-lnx]=1,則f(e)=( 。
A.2B.1C.0D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知角θ的終邊經(jīng)過點(diǎn)$P(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$,則tanθ的值為( 。
A.$-\sqrt{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某單位用2160萬元購得一塊空地,計劃在該空地上建造一棟至少10層,每層2000平方米的樓房,經(jīng)測算,如果將樓房建為x(x≥10)層,那么每平方米的平均建筑費(fèi)用為56+48x(單位:元).
(1)寫出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式.
(2)該樓房應(yīng)建造多少層時,可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購地費(fèi)用,平均購地費(fèi)用=$\frac{購地總費(fèi)用}{建筑面積}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3+ax2-6x+b(b>0)在x=2處取得極值.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)有兩個零點(diǎn),求f(x)在x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC的三個角A,B,C所對的邊分別為a,b,c,$1+\frac{tanA}{tanB}=\frac{2c}{{\sqrt{3}b}}$.
(Ⅰ)求角A的大。
(Ⅱ)若△ABC為銳角三角形,求函數(shù)y=2sin2B-2sinBcosC的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案