【題目】已知函數(shù)

(1)當(dāng) 時(shí),求曲線 在點(diǎn) 處的切線方程;

(2)求 的單調(diào)區(qū)間.

【答案】(1);(2)當(dāng) 時(shí), 的單調(diào)增區(qū)間是 ;

當(dāng)時(shí), 的單調(diào)遞減區(qū)間是 ;遞增區(qū)間是

【解析】

1)對(duì)函數(shù)進(jìn)行求導(dǎo),把代入導(dǎo)函數(shù)中,求出在點(diǎn) 處的切線的斜率,寫出直線的點(diǎn)斜式方程,最后化為一般方程;

(2)對(duì)的值,進(jìn)行分類討論,求出 的單調(diào)區(qū)間.

(1)當(dāng) 時(shí),,所以

所以 , 所以切線方程為

2 當(dāng) 時(shí),在 時(shí)

所以 的單調(diào)增區(qū)間是 ;

當(dāng) 時(shí),函數(shù) 在定義域上的情況如下:

所以 的單調(diào)遞減區(qū)間是 ;遞增區(qū)間是

綜上所述:當(dāng) 時(shí), 的單調(diào)增區(qū)間是 ;

當(dāng)時(shí), 的單調(diào)遞減區(qū)間是 ;遞增區(qū)間是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是首項(xiàng)為1的等差數(shù)列,數(shù)列滿足,且.

(1)求數(shù)列的通項(xiàng)公式;

(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2x1,aR),若對(duì)任意x1[1,+),總存在x2R,使fx1)=gx2),則實(shí)數(shù)a的取值范圍是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán).集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井.取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后.集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高.如果新設(shè)計(jì)的井位與原有井位重合或接近.便利用舊并的地質(zhì)資料.不必打這日新并,以節(jié)約勘探費(fèi)與用,勘探初期數(shù)據(jù)資料見如表:

井號(hào)

坐標(biāo)

鉆探深度

出油量

(參考公式和計(jì)算結(jié)果:,,,).

號(hào)舊井位置線性分布,借助前組數(shù)據(jù)求得回歸直線方程為,求的值.

)現(xiàn)準(zhǔn)備勘探新井,若通過,,,號(hào)井計(jì)算出的,的值(,精確到)相比于()中的,值之差不超過.則使用位置最接近的已有舊井.否則在新位置打開,請(qǐng)判斷可否使用舊井?

)設(shè)出油量與勘探深度的比值不低于的勘探井稱為優(yōu)質(zhì)井,那么在原有口井中任意勘探口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x,gx)=x4,則下列結(jié)論正確的是(

A.hx)=fxgx),則函數(shù)hx)的最小值為4

B.hx)=fx|gx|,則函數(shù)hx)的值域?yàn)?/span>R

C.hx)=|fx||gx|,則函數(shù)hx)有且僅有一個(gè)零點(diǎn)

D.hx)=|fx||gx|,則|hx|4恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①對(duì)于獨(dú)立性檢驗(yàn),的值越大,說明兩事件相關(guān)程度越大,②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過回歸直線= +及回歸系數(shù),可以精確反映變量的取值和變化趨勢(shì),其中正確的個(gè)數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為回饋顧客,新華都購物商場(chǎng)擬通過摸球兌獎(jiǎng)的方式對(duì)500位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球(球的大小、形狀一模一樣),球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.

(1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為40元,其余3個(gè)所標(biāo)的面值均為20元,求顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;

(2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是30000元,并規(guī)定袋中的4個(gè)球由標(biāo)有面值為20元和40元的兩種球共同組成,或標(biāo)有面值為15元和45元的兩種球共同組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡.請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說明理由.

提示:袋中的4個(gè)球由標(biāo)有面值為a元和b元的兩種球共同組成,即袋中的4個(gè)球所標(biāo)的面值既有a元又有b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圓O,,,D為圓O上任意一點(diǎn),過D作圓O的切線分別交直線E,F兩點(diǎn),連AFBE交于點(diǎn)G,若點(diǎn)G形成的軌跡為曲線C

AFBE斜率分別為,,求的值并求曲線C的方程;

設(shè)直線l與曲線C有兩個(gè)不同的交點(diǎn)PQ,與直線交于點(diǎn)S,與直線交于點(diǎn)T,求的面積與面積的比值的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯(cuò)誤的是__________(填序號(hào))

①命題“”的否定是,;

已知, , 的最小值為

設(shè),命題“若,則”的否命題是真命題;

④已知 ,若命題為真命題,則的取值范圍是.

查看答案和解析>>

同步練習(xí)冊(cè)答案