18.已知函數(shù)y=$\left\{\begin{array}{l}{logx,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,輸入自變量x的值,輸出對應(yīng)函數(shù)值的算法中所用到的基本邏輯結(jié)構(gòu)是( 。
A.順序結(jié)構(gòu)B.順序結(jié)構(gòu)、選擇結(jié)構(gòu)
C.條件結(jié)構(gòu)D.順序結(jié)構(gòu)、選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)

分析 根據(jù)程序的特點和函數(shù)解析式的特點,以及程序三種邏輯結(jié)構(gòu)的功能,分析后即可得到答案.

解答 解:根據(jù)算法的特點,任何一個算法都必須有順序結(jié)構(gòu);
∵此函數(shù)是分段函數(shù),求函數(shù)值時需要對x與0的大小關(guān)系進(jìn)行判斷,
∴在執(zhí)行過程中,由于需要分類討論,則需要有條件結(jié)構(gòu),
故選:B.

點評 本題考查算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu),條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)的特點和功能,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知第一象限內(nèi)的點M既在雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上,又在拋物線C2:y2=2px上,設(shè)C1的左,右焦點分別為F1、F2,若C2的焦點為F2,且△MF1F2是以MF1為底邊的等腰三角形,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.1+$\sqrt{2}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,⊙O是△ABC的外接圓,D是$\widehat{AC}$的中點,BD交AC于點E.
(1)求證:CD2-DE2=AE•EC;
(2)若CD的長等于⊙O的半徑,求∠ACD的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.袋中有6個紅球,4個白球,從中任取1球,記住顏色后再放回,連續(xù)摸取4次,設(shè)X為取得紅球的次數(shù),則X的方差D(X)的值為( 。
A.$\frac{12}{5}$B.$\frac{24}{25}$C.$\frac{8}{5}$D.$\frac{2\sqrt{6}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校高一舉行了一次數(shù)學(xué)競賽,為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]的頻數(shù)分別為8,2.
(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)估計本次競賽學(xué)生成績的中位數(shù);
(3)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的每一項均為正數(shù),a1=1,a2n+1=an2+1(n=1,2…),試歸納成數(shù)列{an}的一個通項公式為an=$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知三棱柱ABC-A′B′C′的所有棱長都是2,且∠A′AB=∠A′AC=60°.
(1)求證:點A′在底面ABC內(nèi)的射影在∠BAC的平分線上;
(2)求棱柱ABC-A′B′C′的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示的正數(shù)數(shù)陣中,第一橫行是公差為d的等差數(shù)列,各列均是公比為q等比數(shù)列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,則下列結(jié)論中不正確的是( 。
A.d+2q=a1,2B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.每一橫行都是等差數(shù)列D.ai,j=(2j-1)+21-i(i,j均為正整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.用反余弦函數(shù)值的形式表示各式中的x:
(1)cosx=$\frac{3}{4}$,x∈[0,π];
(2)cosx=-$\frac{\sqrt{5}}{5}$,x∈[0,π];
(3)cosx=-$\frac{\sqrt{5}}{5}$,x∈[-π,0];
(4)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,0];
(5)cosx=$\frac{3}{4}$,x∈[$\frac{3π}{2}$,2π];
(6)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(7)cosx=-$\frac{\sqrt{5}}{5}$,x∈[$\frac{1}{2}$π,$\frac{3}{2}$π].

查看答案和解析>>

同步練習(xí)冊答案