13.某校高一舉行了一次數(shù)學(xué)競(jìng)賽,為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]的頻數(shù)分別為8,2.
(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)估計(jì)本次競(jìng)賽學(xué)生成績(jī)的中位數(shù);
(3)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率.

分析 (1)由題意先求出樣本容量,由此能求出n和頻率分布直方圖中的x,y的值.
(2)設(shè)本次競(jìng)賽學(xué)生成績(jī)的中位數(shù)為m,由頻率分布直方圖列出方程,能求出本次競(jìng)賽學(xué)生成績(jī)的中位數(shù).
(3)由題意可知,分?jǐn)?shù)在[80,90)內(nèi)的學(xué)生有5人,分?jǐn)?shù)在[90,100]內(nèi)的學(xué)生有2人,由此利用列舉法能求出所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率.

解答 (本小題滿分12分)
解:(1)由題意可知,樣本容量n=$\frac{8}{0.016×10}$=50,…(2分)
$y=\frac{2}{50×10}=0.004$,
x=0.100-0.004-0.010-0.016-0.040=0.030.…(4分)
(2)設(shè)本次競(jìng)賽學(xué)生成績(jī)的中位數(shù)為m,
則[0.016+0.03]×10+(m-70)×0.040=0.5,
解得m=71,
∴本次競(jìng)賽學(xué)生成績(jī)的中位數(shù)為71.…(8分)
(3)由題意可知,分?jǐn)?shù)在[80,90)內(nèi)的學(xué)生有5人,
記這5人分別為a1,a2,a3,a4,a5,
分?jǐn)?shù)在[90,100]內(nèi)的學(xué)生有2人,記這2人分別為b1,b2
抽取的2名學(xué)生的所有情況有21種,分別為:
(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),
(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),
(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2).          …(10分)
其中2名同學(xué)的分?jǐn)?shù)都不在[90,100]內(nèi)的情況有10種,分別為:
(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),
(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5).
∴所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率$p=1-\frac{10}{21}=\frac{11}{21}$.…(12分)

點(diǎn)評(píng) 本題考查頻率分布直方圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知三棱錐的三視圖如圖所示,其主視圖、側(cè)視圖、俯視圖的面積分別為1,$\frac{3}{2}$,3,則該三棱錐的外接球體積為( 。
A.$\frac{28\sqrt{14}}{3}$πB.$\frac{56\sqrt{14}}{3}$πC.$\frac{7\sqrt{14}}{3}$πD.$\frac{7\sqrt{14}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.三棱錐P-ABC的四個(gè)頂點(diǎn)郡在同一球面上,球心在面ABC上的射影為H,H在棱BC上,AP⊥面ABC,且AP=1,PB=PC=$\sqrt{2}$.則此球的體積為( 。
A.$\frac{3π}{4}$B.$\frac{3π}{2}$C.$\frac{\sqrt{3}π}{4}$D.$\frac{\sqrt{3}π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)偶函數(shù)f(x)滿足f(x)=x3-8(x≥0),則{x|f(x-1)>0}=( 。
A.{x|x<-2或x>3}B.{x|x<0或x>2}C.{x|x<0或x>3}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)短軸的兩個(gè)頂點(diǎn)與右焦點(diǎn)的連線構(gòu)成等邊三角形,橢圓C上任意一點(diǎn)到橢圓左右兩個(gè)焦點(diǎn)的距離之和為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C與X軸負(fù)半軸交于點(diǎn)A,直線過(guò)定點(diǎn)(-1,0)交橢圓于M,N兩點(diǎn),求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)y=$\left\{\begin{array}{l}{logx,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,輸入自變量x的值,輸出對(duì)應(yīng)函數(shù)值的算法中所用到的基本邏輯結(jié)構(gòu)是( 。
A.順序結(jié)構(gòu)B.順序結(jié)構(gòu)、選擇結(jié)構(gòu)
C.條件結(jié)構(gòu)D.順序結(jié)構(gòu)、選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=2cos(2x+$\frac{π}{4}$),x∈R的單調(diào)遞減區(qū)間是( 。
A.[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈ZB.[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z
C.[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈ZD.[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知n=5${∫}_{0}^{π}$sinxdx,則二項(xiàng)式(2a-3b+c)n的展開(kāi)式中a2bcn-3的系數(shù)為-4320.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若某程序框圖如圖所示,則輸出的n的值是(  )
 
A.43B.44C.45D.46

查看答案和解析>>

同步練習(xí)冊(cè)答案