14.已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合,若曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+2cosα}\\{y=2sinα}\end{array}\right.$(α是參數(shù)),直線l的極坐標(biāo)方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1.
(1)將曲線C的參數(shù)方程化為極坐標(biāo)方程;
(2)由直線l上一點向曲線C引切線,求切線長的最小值.

分析 (1)曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+2cosα}\\{y=2sinα}\end{array}\right.$(α是參數(shù)),利用cos2α+sin2α=1可得直角坐標(biāo)方程,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可得出直角坐標(biāo)方程.
(2)把直線l的極坐標(biāo)方程化為直角坐標(biāo)方程,利用點到直線的距離公式可得圓心C(3,0)到直線l的距離d,即可得出切線長的最小值=$\sqrt{27z54vd^{2}-{r}^{2}}$.

解答 解:(1)曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+2cosα}\\{y=2sinα}\end{array}\right.$(α是參數(shù)),利用cos2α+sin2α=1可得:(x-3)2+y2=4,展開可得:x2+y2-6x+5=0,∴極坐標(biāo)方程為ρ2-6ρcosθ+5=0.
(2)直線l的極坐標(biāo)方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1,展開為:$\sqrt{2}×\frac{\sqrt{2}}{2}$(ρsinθ-ρcosθ)=1,可得y-x=1.
圓心C(3,0)到直線l的距離d=$\frac{|3-0+1|}{\sqrt{2}}$=2$\sqrt{2}$.
∴切線長的最小值=$\sqrt{x06um07^{2}-{r}^{2}}$=$\sqrt{(2\sqrt{2})^{2}-{2}^{2}}$=2.

點評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程及其應(yīng)用、直線與圓相切的性質(zhì)、勾股定理、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AE=1,AB=2,CD=3,E,F(xiàn)分別為AB,CD上的點,以EF為軸將正方形ADFE向上翻折,使平面ADFE與平面BEFC垂直如圖2.
(1)求證:平面BDF⊥平面BCD;
(2)求多面體AEBDFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在極坐標(biāo)系中,求圓ρ=8sinθ上的點到直線θ=$\frac{π}{3}$(ρ∈R)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,AB為圓O的直徑,BC,CD為圓O的切線,B,D為切點.
(Ⅰ)求證:AD∥OC;
(Ⅱ)若AD•OC=8,求圓O的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.定義在R上的可導(dǎo)函數(shù)f(x)滿足(x-314)f(2x)-2xf′(2x)>0恒成立,求證:?x∈R,f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上的一點,$\widehat{AE}$=$\widehat{AC}$,DE交AB于點F.
(1)求證:PF•PO=PA•PB;
(2)若PD=4,PB=2,DF=$\frac{20}{7}$,求弦CD的弦心距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在Rt△ABC中,A=90°,AB=AC=2$\sqrt{2}$,D、E分別為AC、AB的中點,將△ABC沿著DE折疊,使平面ADE⊥平面CDEB.
(I)若F為AC的中點,求證:DF∥平面ABE;
(Ⅱ)設(shè)θ為平面ABE與平面ACD兩個平面相交所成的銳角,求θ的正弦值;
(Ⅲ)點H是線段BC上一個動點(點H不與B、C重合),是否存在點H運動到某一位置,使得DH⊥AE成立,如果成立,確定H的位置,如果不成立,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=x2+lnx的零點個數(shù)為1個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求(1)|x-3|+|x+1|的最小值;
(2)|x-3|-|x+1|的最大值.

查看答案和解析>>

同步練習(xí)冊答案