4.求(1)|x-3|+|x+1|的最小值;
(2)|x-3|-|x+1|的最大值.

分析 方法1:根據(jù)絕對值不等式進(jìn)行求解即可.
方法2:根據(jù)絕對值的性質(zhì)將絕對值表示成分段函數(shù)性質(zhì),利用數(shù)形結(jié)合進(jìn)行求解.

解答 解:(1)方法1:|x-3|+|x+1|≥|x-3-(x+1)|=|x-3-x-1|=4,
即|x-3|+|x+1|的最小值是4;
方法2:|x-3|+|x+1|=$\left\{\begin{array}{l}{-2x+2,}&{x<-1}\\{4}&{-1≤x≤3}\\{2x-2,}&{x>3}\end{array}\right.$,則對應(yīng)的圖象為,
則函數(shù)的最小值為4.
(2)方法1:|x-3|-|x+1|≤|x-3-x+-1|=4,
即|x-3|-|x+1|的最大值是4.
方法2:|x-3|-|x+1|=$\left\{\begin{array}{l}{4,}&{x<-1}\\{-2x+2,}&{-1≤x≤3}\\{-4,}&{x≥3}\end{array}\right.$,
則對應(yīng)的圖象為:

則函數(shù)的最大值為4.

點評 本題主要考查絕對值函數(shù)的最值的應(yīng)用,一種方法是利用絕對值不等式的性質(zhì)進(jìn)行求解,另外一種是利用分段函數(shù)的圖象和性質(zhì),考查學(xué)生的轉(zhuǎn)化能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合,若曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+2cosα}\\{y=2sinα}\end{array}\right.$(α是參數(shù)),直線l的極坐標(biāo)方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1.
(1)將曲線C的參數(shù)方程化為極坐標(biāo)方程;
(2)由直線l上一點向曲線C引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.橢圓x2+4y2=4的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{3}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=log2(x+1).
(Ⅰ)求函數(shù)f(x)在定義域R上的解析式;
(Ⅱ)解關(guān)于x的不等式f(2x-1)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知一個球的體積為$\frac{4}{3}π$,則該球的表面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=1-cos2x+2$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x,x∈R
(1)求f(x)的最小正周期和值域;
(2)若x0(0≤x0≤$\frac{π}{2}$)為f(x)的一個零點,求sin2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓${x^2}+\frac{y^2}{4}=1$,A、B是橢圓的左右頂點,P是橢圓上不與A、B重合的一點,PA、PB的傾斜角分別為α、β,則$\frac{{cos({α-β})}}{{cos({α+β})}}$=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個圖象,只有一個符合y=|k1x+b1|+|k2x+b2|-|k3x+b3|(k1,k2k3∈R+,b1b2b3≠0)的圖象,則根據(jù)你所判斷的圖象,k1、k2、k3之間一定滿足的關(guān)系是( 。
A.k1+k2=k3B.k1=k2=k3C.k1+k2>k3D.k1+k2<k3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

同步練習(xí)冊答案