15.已知復(fù)數(shù)z=(m2-4)+(m2-5m+6)i,其中m∈R
(1)若復(fù)數(shù)z=0,求m的值;
(2)若復(fù)數(shù)z為純虛數(shù),求m的值;
(3)若復(fù)數(shù)z在復(fù)平面上所表示的點(diǎn)在第四象限,求m的取值范圍.

分析 (1)利用復(fù)數(shù)的實(shí)部與虛部都是0,求解m即可.
(2)利用復(fù)數(shù)的實(shí)部為0,虛部不為0,求解m即可.
(3)利用復(fù)數(shù)的幾何意義列出不等式組,求解m的范圍即可.

解答 解:復(fù)數(shù)z=(m2-4)+(m2-5m+6)i,其中m∈R
(1)若復(fù)數(shù)z=0,可得m2-4=0,并且m2-5m+6=0,解得m=2;
(2)若復(fù)數(shù)z為純虛數(shù),可得$\left\{\begin{array}{l}{{m}^{2}-4=0}\\{{m}^{2}-5m+6≠0}\end{array}\right.$,解得m=-2;
(3)若復(fù)數(shù)z在復(fù)平面上所表示的點(diǎn)在第四象限,
可得:$\left\{\begin{array}{l}{{m}^{2}-4>0}\\{{m}^{2}-5m+6<0}\end{array}\right.$,解得m∈(2,3).

點(diǎn)評(píng) 本題考查復(fù)數(shù)運(yùn)算,復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.雙曲線的漸近線方程為x±2y=0,焦距為10,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知等差數(shù)列{an}中,a2=7,a4=15,則前5項(xiàng)的和S5=( 。
A.55B.65C.95D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知F1、F2為橢圓C:$\frac{{2{x^2}}}{9}+\frac{{2{y^2}}}{5}$=1的左、右焦點(diǎn),點(diǎn)P在C上,|PF1|=2|PF2|,則cos∠F1PF2( 。
A.$\frac{1}{4}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.點(diǎn)P(5,-2)關(guān)于直線x-y+5=0 對(duì)稱的點(diǎn)Q的坐標(biāo)(-7,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E是BC的中點(diǎn),F(xiàn)是PA上的一個(gè)動(dòng)點(diǎn).
(1)求證:CF⊥BD;
(2)求二面角D-PE-A的大小的正弦值;
(3)若直線EF與平面CDE所成角的正切值為$\frac{1}{\sqrt{21}}$,求AF的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A、B、C是平面內(nèi)共線的三個(gè)點(diǎn),P是平面內(nèi)的任意一點(diǎn),且滿足$\overrightarrow{PC}$=sinαcosβ$\overrightarrow{PA}$-cosαsinβ$\overrightarrow{PB}$,則α-β的一個(gè)可能值為( 。
A.-$\frac{π}{2}$B.0C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若運(yùn)行如圖所示的程序框圖,則輸出結(jié)果S的值為2500.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=lnx+$\frac{4f'(2)}{x}$的圖象在點(diǎn) P(2,f(2))處切線的斜率為$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案