設(shè)定在R上的函數(shù)滿足:,則
         .
0

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240000016641419.png" style="vertical-align:middle;" />,所以
 
0
點(diǎn)評(píng):解題關(guān)鍵在于求函數(shù)的解析式以及注意所求式子的特點(diǎn)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的 造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長(zhǎng)方形長(zhǎng)為米.
(1)求底面積,并用含的表達(dá)式表示池壁面積;
(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知f (x)=
(1)求函數(shù)f (x)的值域.
(2)若f (t)=3,求t的值.
(3)用單調(diào)性定義證明在[2,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)f(x)是R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x(1+),則當(dāng)x<0時(shí),f(x)=(    )
A.-x(1+)B.x(1+)C.-x(1-)D. x(1-)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)是定義在R上的偶函數(shù),當(dāng)時(shí),,那么當(dāng)時(shí),的解析式是                                       
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

商店出售茶壺和茶杯,茶壺單價(jià)為每個(gè)20元,茶杯單價(jià)為每個(gè)5元,該店推出兩種促銷優(yōu)惠辦法:
(1)買(mǎi)1個(gè)茶壺贈(zèng)送1個(gè)茶杯;
(2)按總價(jià)打9.2折付款。
某顧客需要購(gòu)買(mǎi)茶壺4個(gè),茶杯若干個(gè),(不少于4個(gè)),若設(shè)購(gòu)買(mǎi)茶杯數(shù)為x個(gè),付款數(shù)為y(元),試分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)關(guān)系式,并討論該顧客買(mǎi)同樣多的茶杯時(shí),兩種辦法哪一種更省錢(qián)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)已知函數(shù)其中a>0,且a≠1,
(1)求函數(shù)的定義域;
(2)當(dāng)0<a<1時(shí),解關(guān)于x的不等式;
(3)當(dāng)a>1,且x∈[0,1)時(shí),總有恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

關(guān)于的函數(shù),有下列結(jié)論:
①該函數(shù)的定義域是;②該函數(shù)是奇函數(shù);
③該函數(shù)的最小值為; ④當(dāng) 時(shí)為增函數(shù),當(dāng)時(shí)為減函數(shù);
其中,所有正確結(jié)論的序號(hào)是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列四組函數(shù),表示同一函數(shù)的是
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案