【題目】已知圓.由直線(xiàn)上離圓心最近的點(diǎn)向圓引切線(xiàn),切點(diǎn)為,則線(xiàn)段的長(zhǎng)為__________.
【答案】
【解析】圓心到直線(xiàn)的距離:,
結(jié)合幾何關(guān)系可得線(xiàn)段的長(zhǎng)度為.
【題型】填空題
【結(jié)束】
16
【題目】設(shè)是兩個(gè)非零平面向量,則有:
①若,則
②若,則
③若,則存在實(shí)數(shù),使得
④若存在實(shí)數(shù),使得,則或四個(gè)命題中真命題的序號(hào)為 __________.(填寫(xiě)所有真命題的序號(hào))
【答案】①③④
【解析】逐一考查所給的結(jié)論:
①若,則,據(jù)此有:,說(shuō)法①正確;
②若,取,則,
而,說(shuō)法②錯(cuò)誤;
③若,則,據(jù)此有:,
由平面向量數(shù)量積的定義有:,
則向量反向,故存在實(shí)數(shù),使得,說(shuō)法③正確;
④若存在實(shí)數(shù),使得,則向量與向量共線(xiàn),
此時(shí),,
若題中所給的命題正確,則,
該結(jié)論明顯成立.即說(shuō)法④正確;
綜上可得:真命題的序號(hào)為①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為, , ().
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:經(jīng)過(guò)點(diǎn)(,),且兩個(gè)焦點(diǎn),的坐標(biāo)依次為(1,0)和(1,0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),是橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),直線(xiàn)的斜率為,直線(xiàn)的斜率為,求當(dāng)為何值時(shí),直線(xiàn)與以原點(diǎn)為圓心的定圓相切,并寫(xiě)出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列中,,且前7項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如下表:(平均每天鍛煉的時(shí)間單位:分鐘)
將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
平均每天鍛煉的時(shí)間(分鐘) | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
從上述200名學(xué)生中,按“課外體育達(dá)標(biāo)”、“課外體育不達(dá)標(biāo)”分層抽樣,抽取4人得到一個(gè)樣本,再?gòu)倪@個(gè)樣本中抽取2人,求恰好抽到一名“課外體育不達(dá)標(biāo)”學(xué)生的概率.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在中,,且.
(1)求角的大小;
(2)設(shè)數(shù)列滿(mǎn)足,前項(xiàng)和為,若,求的值.
【答案】(1);(2)或.
【解析】試題分析:
(1)由題意結(jié)合三角形內(nèi)角和為可得.由余弦定理可得,,結(jié)合勾股定理可知為直角三角形,,.
(2)結(jié)合(1)中的結(jié)論可得 .則 ,據(jù)此可得關(guān)于實(shí)數(shù)k的方程,解方程可得,則或.
試題解析:
(1)由已知,又,所以.又由,
所以,所以,
所以為直角三角形,,.
(2) .
所以 ,由,得
,所以,所以,所以或.
【題型】解答題
【結(jié)束】
18
【題目】已知點(diǎn)是平行四邊形所在平面外一點(diǎn),如果,,.(1)求證:是平面的法向量;
(2)求平行四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求圓心在直線(xiàn)上,且與直線(xiàn)相切于點(diǎn)的圓的方程;
(2)求與圓外切于點(diǎn)且半徑為的圓的方程.
【答案】(1);(2).
【解析】試題分析:
(1)由題意可得圓的一條直徑所在的直線(xiàn)方程為,據(jù)此可得圓心,半徑,則所求圓的方程為.
(2)圓的標(biāo)準(zhǔn)方程為,得該圓圓心為,半徑為,兩圓連心線(xiàn)斜率.設(shè)所求圓心為,結(jié)合弦長(zhǎng)公式可得,.則圓的方程為.
試題解析:
(1)過(guò)點(diǎn)且與直線(xiàn)垂直的直線(xiàn)為,
由 .
即圓心,半徑,
所求圓的方程為.
(2)圓方程化為,得該圓圓心為,半徑為,故兩圓連心線(xiàn)斜率.設(shè)所求圓心為,
,∴,
,∴.
∴.
點(diǎn)睛:求圓的方程,主要有兩種方法:
(1)幾何法:具體過(guò)程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理.如:①圓心在過(guò)切點(diǎn)且與切線(xiàn)垂直的直線(xiàn)上;②圓心在任意弦的中垂線(xiàn)上;③兩圓相切時(shí),切點(diǎn)與兩圓心三點(diǎn)共線(xiàn).
(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個(gè)獨(dú)立參數(shù),所以應(yīng)該有三個(gè)獨(dú)立等式.
【題型】解答題
【結(jié)束】
20
【題目】如圖所示,平面,點(diǎn)在以為直徑的上,,,點(diǎn)為線(xiàn)段的中點(diǎn),點(diǎn)在弧上,且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)設(shè)二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公差不為零的等差數(shù)列滿(mǎn)足,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形 中, , , , , , 是 上的點(diǎn), , 為 的中點(diǎn),將 沿 折起到 的位置,使得 ,如圖2.
(1)求證:平面平面 ;
(2)求二面角 的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com