已知拋物線y2 =4x的焦點為F,準線為交于A,B兩點,若△FAB為直角三角形,則雙曲線的離心率是

A.             B.             C.2                D.

 

【答案】

B

【解析】

試題分析:先根據(jù)拋物線方程求得準線方程,代入雙曲線方程求得y,根據(jù)雙曲線的對稱性可知△FAB為等腰直角三角形,進而可求得A或B的縱坐標為2,進而求得a,利用a,b和c的關(guān)系求得c,則雙曲線的離心率可得. 解:依題意知拋物線的準線x=-1.代入雙曲線方程得 ,不妨設(shè)A(-1,) ∵△FAB是等腰直角三角形,=2,得到a=,∴c2=a2+b2=那么可知離心率為,選B.

考點:雙曲線的簡單性質(zhì)

點評:本題主要考查了雙曲線的簡單性質(zhì).解題的關(guān)鍵是通過雙曲線的對稱性質(zhì)判斷出△FAB為等腰直角三角形

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點為F,直線m為拋物線在第一象限內(nèi)一點P處的切線,過P作平行于x軸的直線n,過焦點F平行于m的直線交n于點M,若|PM|=4,則點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•西城區(qū)一模)已知拋物線y2=4x的焦點為F,直線l過點M(4,0).
(Ⅰ)若點F到直線l的距離為
3
,求直線l的斜率;
(Ⅱ)設(shè)A,B為拋物線上兩點,且AB不與x軸重合,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px的焦點F到其準線的距離是8,拋物線的準線與x的交點為K,點A在拋物線上且|AK|=
2
|AF|
,則△AFK的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)上一點Q(4,m)到其焦點的距離為5
(1)求p與m的值;;
(2)斜率為1的直線不過點P(2,2),且與拋物線交于點A,B,直線AP,BP分別交拋物線于點C,D,求證:直線AD,BC交于一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線
y
2
 
=4x
的焦點為F,過點A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

同步練習(xí)冊答案