直線l與拋物線交于A,B兩點(diǎn);線段AB中點(diǎn)為,則直線l的方程為

A、            B、、

C、      D、

 

【答案】

C

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=2px(p為常數(shù))的準(zhǔn)線與X軸交于點(diǎn)K,過K的直線l與拋物線交于A、B兩點(diǎn),則
OA
OB
=
5
4
p2
5
4
p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)F在x軸正半軸上,傾斜角為銳角的直線l過F點(diǎn),設(shè)直線l與拋物線交于A、B兩點(diǎn),與拋物線的準(zhǔn)線交于M點(diǎn),
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點(diǎn)A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點(diǎn)N.已知點(diǎn)P是拋物線C1′上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C′1于T,S,兩點(diǎn),若過N,P兩點(diǎn)的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)是拋物線y2=4x的焦點(diǎn),Q是準(zhǔn)線與x軸的交點(diǎn),直線l經(jīng)過點(diǎn)Q.
(Ⅰ)直線l與拋物線有唯一公共點(diǎn),求l方程;
(Ⅱ)直線l與拋物線交于A、B兩點(diǎn);(i)設(shè)FA、FB的斜率分別為k1,k2,求k1+k2的值;
(ii)若點(diǎn)R在線段AB上,且滿足
|AR|
|RB|
=|
AQ
QB
|
,求點(diǎn)R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•紹興模擬)如圖,過拋物線x2=4y焦點(diǎn)F的直線l與拋物線交于A,B兩點(diǎn)(A在第一象限),點(diǎn)C(0,t)(t>1).
(I)若△CBF,△CFA,△CBA的面積成等差數(shù)列,求直線l的方程;
(II)若|AB|∈(
9
2
,
64
7
)
,且∠FAC為銳角,試求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x上一定點(diǎn)P(x0,2),直線l的一個(gè)方向向量
d
=(1,-1)

(1)若直線l過P,求直線l的方程;
(2)若直線l不過P,且直線l與拋物線交于A,B兩點(diǎn),設(shè)直線PA,PB的斜率為kPA,kPB,求kPA+kPB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案