若關(guān)于的方程x2-(m-1)x+2-m=0的兩根為正實(shí)數(shù),則( 。
A、m≤-1-2
2
或m≥-1+2
2
B、1<m<2
C、m≥2
2
-1
D、-1+2
2
≤m<2
考點(diǎn):一元二次方程的根的分布與系數(shù)的關(guān)系
專題:不等式的解法及應(yīng)用
分析:方程有兩個(gè)正實(shí)根,則要滿足判別式△≥0,兩根之和大于0,兩根之積大于0,這樣會(huì)得到關(guān)于m的三個(gè)不等式,解不等式即可得到m的取值范圍.
解答: 解:若關(guān)于的方程x2-(m-1)x+2-m=0的兩根為正實(shí)數(shù),則:
(m-1)2-4(2-m)≥0
m-1>0
2-m>0
解得:-1+2
2
≤m<2

故選:D.
點(diǎn)評(píng):考查一元二次方程的根與判別式及系數(shù)的關(guān)系,要正確求解不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,∠B,∠C所對(duì)的邊分別為a,b,c,若cos2B+cosB+cos(A-C)=1,則下列說法正確的是(  )
A、a,b,c三邊成等比數(shù)列
B、a,b,c三邊成等差數(shù)列
C、a,c,b三邊成等比數(shù)列
D、a,c,b三邊成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
y≥1
y≥2x-1
x-y≥-2
,則目標(biāo)函數(shù)z=x+y的最大值為( 。
A、2B、0C、9D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,z=
1
1-i
,且z的共軛復(fù)數(shù)為
.
z
,則
.
z
=(  )
A、
1+i
2
B、
1-i
2
C、1+i
D、1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若如圖是計(jì)算2+3+4+5+6的值的程序,則在①、②處填寫的語句可以是( 。
A、①i>1;②i=i-1
B、①i>1;②i=i+1
C、①i>=1;②i=i+1
D、①i>=1;②i=i-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1+a2=3,a2+a3=6,則a3a5=( 。
A、4B、8C、64D、128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x2-3x-4
x-2
<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試.假設(shè)某學(xué)生每次通過測(cè)試的概率都是
1
3
,每次測(cè)試通過與否互相獨(dú)立.規(guī)定:若前4次都沒有通過測(cè)試,則第5次不能參加測(cè)試.
(Ⅰ)求該學(xué)生考上大學(xué)的概率.
(Ⅱ)如果考上大學(xué)或參加完5次測(cè)試就結(jié)束,記該生參加測(cè)試的次數(shù)為ξ,求P(ξ>3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(1,-1),將向量
c
=(2,3)表示成x
a
+y
b
的形式.

查看答案和解析>>

同步練習(xí)冊(cè)答案