12.y=cos(2x+$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

分析 根據(jù)y=Acos(ωx+φ)的周期等于$\frac{2π}{ω}$,得出結(jié)論.

解答 解:函數(shù)y=cos(2x+$\frac{π}{6}$)的最小正周期是$\frac{2π}{2}$=π,
故選:C.

點(diǎn)評 本題主要考查三角函數(shù)的周期性及其求法,利用了y=Acos(ωx+φ)的周期等于$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知p:2a≤x≤a2+1,q:x2-3(a+1)x+6a+2≤0,若p是q的充分條件,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知變量x、y滿足$\left\{\begin{array}{l}{x≤1}\\{x-2y+3≥0}\\{y≥-1}\end{array}\right.$,則z=2x-y的最大值為( 。
A.-9B.-3C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E為PB的中點(diǎn).
(1)證明:CE⊥AB;
(2)若AB=PA=2,求四棱錐P-ABCD的體積;
(3)若∠PDA=60°,求直線CE與平面PAB所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知點(diǎn)A(x1,y1),B(x2,y2),M(1,0),$\overrightarrow{AB}$=(3λ,4λ)(λ≠0),$\overrightarrow{MA}$=-4$\overrightarrow{MB}$,若拋物線y2=ax經(jīng)過A和B兩點(diǎn),則a的值為(  )
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x≥3},B={1,2,3,4,5}則A∩B=(  )
A.{1,2,3}B.{2,3,4}C.{3,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=x3+ln$\frac{1+x}{1-x}$,且f(3a-2)+f(a-1)<0,則實(shí)數(shù)a的取值范圍是($\frac{1}{3}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$f(x)=lnx與函數(shù)g(x)=\frac{2}{x}$的交點(diǎn)的橫坐標(biāo)所在的大致區(qū)間是( 。
A.(1,2)B.(2,3)C.$({1,\frac{1}{e}})$D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.利用函數(shù)圖象,觀察并寫出下列極限:
(1)$\underset{lim}{x→∞}$$\frac{1}{x+1}$;
(2)$\underset{lim}{x→∞}$3x;
(3)$\underset{lim}{x→∞}$($\frac{1}{2}$)x
(4)$\underset{lim}{x→0}$sinx;
(5)$\underset{lim}{x→\frac{π}{4}}$tanx;
(6)$\underset{lim}{x→1}$lnx.

查看答案和解析>>

同步練習(xí)冊答案