【題目】設(shè)橢圓E: (a>b>0),其長軸長是短軸長的 倍,過焦點(diǎn)且垂直于x軸的直線被橢圓截得的弦長為2
(1)求橢圓E的方程;
(2)設(shè)過右焦點(diǎn)F2且與x軸不垂直的直線l交橢圓E于P,Q兩點(diǎn),在線段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.

【答案】
(1)解:不妨設(shè)焦點(diǎn)的坐標(biāo)是(c,0),

則過焦點(diǎn)且垂直于x軸的直線與橢圓的交點(diǎn)坐標(biāo)為(c,y0),

代入 可得,y0= ,

因為過焦點(diǎn)且垂直于x軸的直線被橢圓截得的弦長為2 ,

所以

由題意得,a= b,代入上式解得:a=2 、b= ,

故所求橢圓方程為


(2)解:假設(shè)在線段OF2上存在點(diǎn)M(m,0)( )滿足條件,

∵直線與x軸不垂直,

∴設(shè)直線l的方程為

設(shè)P(x1,y1),Q(x2,y2),

,可得

,

, ,其中x2﹣x1≠0,

∵以MP,MQ為鄰邊的平行四邊形是菱形,

∴(x1+x2﹣2m)(x2﹣x1)+(y1+y2)(y2﹣y1)=0.

∴x1+x2﹣2m+k(y1+y2)=0.

化簡得 = (k≠0),

在線段OF2上存在點(diǎn)M(m,0)符合條件,且


【解析】(1)由題意先求出直線與橢圓的交點(diǎn)坐標(biāo),再列出方程求出a、b的值,代入橢圓方程即可;(2)先假設(shè)存在點(diǎn)M(m,0)( )滿足條件,由點(diǎn)斜式設(shè)出直線l的方程,以及P、Q的坐標(biāo),將直線方程代入橢圓方程化簡后,利用韋達(dá)定理、菱形的等價條件、向量知識,可求出m的范圍,再進(jìn)行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=1﹣x2
(1)求函數(shù)f(x)的解析式;
(2)作出函數(shù)f(x)的圖象.
(3)若函數(shù)f(x)在區(qū)間[a,a+1]上單調(diào),直接寫出實(shí)數(shù)a的取值范圍.(不必寫出演算過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為矩形的四棱錐中, .

(1)證明:平面平面;

(2)若異面直線所成角為, ,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則(
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“出彩中國人”的一期比賽中,有6位歌手(1~6)登臺演出,由現(xiàn)場的百家大眾媒體投票選出最受歡迎的出彩之星,各家媒體獨(dú)立地在投票器上選出3位出彩候選人,其中媒體甲是1號歌手的歌迷,他必選1號,另在2號至6號中隨機(jī)的選2名;媒體乙不欣賞2號歌手,他必不選2號;媒體丙對6位歌手的演唱沒有偏愛,因此在1至6號歌手中隨機(jī)的選出3名.
(1)求媒體甲選中3號且媒體乙未選中3號歌手的概率;
(2)X表示3號歌手得到媒體甲、乙、丙的票數(shù)之和,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.
(1)當(dāng)a=﹣ ,c= 時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)c= +1時,若f(x)≥ 對x∈(c,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)函數(shù)f(x)的圖象在點(diǎn)P(x1 , f(x1))、Q(x2 , f(x2))兩處的切線分別為l1、l2 . 若x1= ,x2=c,且l1⊥l2 , 求實(shí)數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 的展開式中,前三項系數(shù)成等差數(shù)列.
(1)求第三項的二項式系數(shù)及項的系數(shù);
(2)求含x項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的圖像與的圖像關(guān)于軸對稱,函數(shù),若關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形, , , .

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案