已知函數(shù),(,.若,且函數(shù)的圖像關(guān)于點(diǎn)對稱,并在處取得最小值,則正實(shí)數(shù)的值構(gòu)成的集合是          .

試題分析:由于函數(shù)的最小正周期為,由于函數(shù)的圖象關(guān)于點(diǎn)對稱,并在處取得最小值,即直線是函數(shù)的一條對稱軸,故的奇數(shù)倍,即,其中,解得,故正實(shí)數(shù)的取值集合為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)
(1)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)時(shí),求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若在定義域上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其圖象為曲線,點(diǎn)為曲線上的動(dòng)點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線.
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)點(diǎn)時(shí),的方程為,求實(shí)數(shù)的值;
(Ⅲ)設(shè)切線、的斜率分別為,試問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于實(shí)數(shù)a,b,定義運(yùn)算“﹡”:a﹡b=,設(shè)f(x)=(2x-1)﹡x,且關(guān)于x 的方程f(x)=m(m∈R)恰有三個(gè)互不相等的實(shí)數(shù)根,,則的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

符號表示不超過的最大整數(shù),例如,,定義函數(shù),給出下列四個(gè)命題:(1)函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824022131573303.png" style="vertical-align:middle;" />,值域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824022131573359.png" style="vertical-align:middle;" />;(2)方程有無數(shù)個(gè)解;(3)函數(shù)是周期函數(shù);(4)函數(shù)是增函數(shù).其中正確命題的個(gè)數(shù)有(   )
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于函數(shù)和區(qū)間D,如果存在,使,則稱是函數(shù)在區(qū)間D上的“友好點(diǎn)”.現(xiàn)給出兩個(gè)函數(shù)
,         ②,
           ④ , 
其中在區(qū)間上存在“友好點(diǎn)”的有( )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=
(Ⅰ)求函數(shù)y的最小正周期;
(Ⅱ)求函數(shù)y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚的年生長量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案