已知雙曲線x2-
y2
3
=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則
PA1
PF2
最小值為( 。
A、-2
B、-
81
16
C、1
D、0
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,平面向量及應(yīng)用,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意,設(shè)P(x,y)(x≥1),根據(jù)雙曲線的方程,易得A1、F2的坐標(biāo),將其代入
PA1
PF2
,可得關(guān)于x、y的關(guān)系式,結(jié)合雙曲線的方程,可得
PA1
PF2
═4x2-x-5配方,再由x的范圍,可得答案.
解答: 解:根據(jù)題意,設(shè)P(x,y)(x≥1),
易得A1(-1,0),F(xiàn)2(2,0),
PA1
PF2
=(-1-x,y)•(2-x,y)=x2-x-2+y2
又x2-
y2
3
=1,故y2=3(x2-1),
于是
PA1
PF2
=4x2-x-5=4(x-
1
8
2-5-
1
16
,
當(dāng)x=1時(shí),取到最小值-2;
故選A.
點(diǎn)評(píng):本題考查雙曲線方程的應(yīng)用,涉及最值問題;解題的思路是先設(shè)出變量,表示出要求的表達(dá)式,結(jié)合圓錐曲線的方程,將其轉(zhuǎn)化為只含一個(gè)變量的關(guān)系式,進(jìn)而由不等式的性質(zhì)或函數(shù)的最值進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
4
x4
-ax2+2x(a∈R).
(Ⅰ)若a=
3
2
,求函數(shù)f(x)極值;
(Ⅱ)設(shè)F(x)=f′(x)+(2a-1)x2+a2x-2,若函數(shù)F(x)在[0,1]上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在(0,+∞)上的增函數(shù),且f(x)=f(
x
y
)+f(y),若f(3)=1,f(x)-f(
1
x-5
)≥2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求導(dǎo):
①y=log3x2
②y=23x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是⊙C:(x-1)2+(y-
3
2=1上的一個(gè)動(dòng)點(diǎn),A(
3
,1),則
OP
OA
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的三角方程sin(x+
π
4
)-sin2x=a有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,正方形ABCD的邊長(zhǎng)為1,AP⊥平面ABCD,且AP=
2
,則PC與平面PAB所成的角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=2,an+1=an+
1
an
(n=1,2,…).
(1)求a2,a3,a4的值;
(2)比較an
2n+1
的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[a,b]上的函數(shù),其圖象是一條連續(xù)的曲線,且滿足下列條件:
①f(x)的值域?yàn)镸,且M⊆[a,b];
②對(duì)任意不相等的x,y∈[a,b],都有|f(x)-f(y)|<|x-y|.
那么,關(guān)于x的方程f(x)=x在區(qū)間[a,b]上根的情況是( 。
A、沒有實(shí)數(shù)根
B、有且僅有一個(gè)實(shí)數(shù)根
C、恰有兩個(gè)不等的實(shí)數(shù)根
D、實(shí)數(shù)根的個(gè)數(shù)無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案