【題目】已知在平面直角坐標系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點為極點,x軸的正半軸為極軸建立極坐標系,求橢圓C的極坐標方程;
(2)設M(x,y)為橢圓C上任意一點,求x+2y的取值范圍.

【答案】
(1)解:橢圓C的參數(shù)方程為 ,消去參數(shù),可得普通方程為 =1,極坐標方程為
(2)解:設M(x,y)為橢圓C上任意一點,則x+2y=3cosθ+4sinθ=5sin(θ+α),

∴x+2y的取值范圍是[﹣5,5]


【解析】(1)橢圓C的參數(shù)方程為 ,消去參數(shù),可得普通方程,即可求橢圓C的極坐標方程;(2)設M(x,y)為橢圓C上任意一點,則x+2y=3cosθ+4sinθ=5sin(θ+α),即可求x+2y的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn , 且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1,則數(shù)列{bn}的前1000項和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是ab,c,已知

(1)求的值;

(2)若,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某闖關游戲規(guī)則是:先后擲兩枚骰子,將此試驗重復n輪,第n輪的點數(shù)分別記為xn , yn , 如果點數(shù)滿足xn ,則認為第n輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(Ⅰ)求第一輪闖關成功的概率;
(Ⅱ)如果第i輪闖關成功所獲的獎金數(shù)f(i)=10000× (單位:元),求某人闖關獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數(shù)為隨機變量X,求x的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調性,并用定義證明你的結論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體中,分別為 棱,上的點. 已知下列判斷:

平面;在側面上 的正投影是面積為定值的三角形;在平面內總存在與平面平行的直線;平 面與平面所成的二面角(銳角)的大小與點的位置有關,與點的位置無關.

其中正確判斷的個數(shù)有

(A)1個 (B)2個 (C)3個 (D)4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓及直線,直線被圓截得的弦長為

)求實數(shù)的值.

)求過點并與圓相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是二次函數(shù),其函數(shù)圖像經過(0,2),時取得最小值1.

(1)求的解析式.

(2)求在[kk+1]上的最小值.

查看答案和解析>>

同步練習冊答案