【題目】已知在平面直角坐標系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點為極點,x軸的正半軸為極軸建立極坐標系,求橢圓C的極坐標方程;
(2)設M(x,y)為橢圓C上任意一點,求x+2y的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}的前n項和為Sn , 且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1,則數(shù)列{bn}的前1000項和為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某闖關游戲規(guī)則是:先后擲兩枚骰子,將此試驗重復n輪,第n輪的點數(shù)分別記為xn , yn , 如果點數(shù)滿足xn< ,則認為第n輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(Ⅰ)求第一輪闖關成功的概率;
(Ⅱ)如果第i輪闖關成功所獲的獎金數(shù)f(i)=10000× (單位:元),求某人闖關獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數(shù)為隨機變量X,求x的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調性,并用定義證明你的結論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體中,,分別為 棱,上的點. 已知下列判斷:
①平面;②在側面上 的正投影是面積為定值的三角形;③在平面內總存在與平面平行的直線;④平 面與平面所成的二面角(銳角)的大小與點的位置有關,與點的位置無關.
其中正確判斷的個數(shù)有
(A)1個 (B)2個 (C)3個 (D)4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是二次函數(shù),其函數(shù)圖像經過(0,2),在時取得最小值1.
(1)求的解析式.
(2)求在[k,k+1]上的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com