【題目】等差數列{an}的前n項和為Sn , 且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數,如[0.9]=0,[lg99]=1,則數列{bn}的前1000項和為 .
科目:高中數學 來源: 題型:
【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進行高次開方運算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數表,并稱之為“開方作法本源”圖.下列數表的構造思路就源于“楊輝三角”.該表由若干行數字組成,從第二行起,每一行中的數字均等于其“肩上”兩數之和,表中最后一行僅有一個數,則這個數是 ( )
2017 2016 2015 2014……6 5 4 3 2 1
4033 4031 4029…………11 9 7 5 3
8064 8060………………20 16 12 8
16124……………………36 28 20
………………………
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣λ,且數列{bn}是單調遞增數列,則實數λ的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函數f(x)有且只有一個極值點,求實數a的取值范圍;
(2)對于函數f(x)、f1(x)、f2(x),若對于區(qū)間D上的任意一個x,都有f1(x)<f(x)<f2(x),則稱函數f(x)是函數f1(x)、f2(x)在區(qū)間D上的一個“分界函數”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 問是否存在實數a,使得f(x)是函數f1(x)、f2(x)在區(qū)間(1,+∞)上的一個“分界函數”?若存在,求實數a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.
Ⅰ判斷直線l與圓C的交點個數;
Ⅱ若圓C與直線l交于A,B兩點,求線段AB的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}中,已知3a5=7a10 , 且a1<0,則數列{an}前n項和Sn(n∈N*)中最小的是( )
A.S7或S8
B.S12
C.S13
D.S14
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,等腰梯形中,,,,,為的中點,矩形所在的平面和平面互相垂直.
()求證:平面.
()設的中點為,求證:平面.
()求三棱錐的體積.(只寫出結果,不要求計算過程)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,橢圓C的參數方程為 (θ為參數).
(1)以原點為極點,x軸的正半軸為極軸建立極坐標系,求橢圓C的極坐標方程;
(2)設M(x,y)為橢圓C上任意一點,求x+2y的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com