【題目】據(jù)統(tǒng)計(jì),某物流公司每天的業(yè)務(wù)中,從甲地到乙地的可配送的貨物量X(40≤X<200,單位:件)的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問題.
(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;
(2)該物流公司擬購置貨車專門運(yùn)營從甲地到乙地的貨物,一輛貨車每天只能運(yùn)營一趟,每輛車每 趟最多只能裝載40 件貨物,滿載發(fā)車,否則不發(fā)車.若發(fā)車,則每輛車每趟可獲利1000 元;若未發(fā)車,
則每輛車每天平均虧損200 元.為使該物流公司此項(xiàng)業(yè)務(wù)的營業(yè)利潤最大,該物流公司應(yīng)該購置幾輛貨
車?
【答案】
(1)解:在區(qū)間[120,160)的頻率為 ,
該物流公司每天從甲地到乙地平均可配送的貨物量:
(2)解:從甲地到乙地的可配送貨物量X在[40,80),[80,120),[120,160),[160,200)的概率分別為 .
設(shè)運(yùn)輸公司每天的營業(yè)利潤為Y.
①若購置1輛車,則Y的值為1000;
②若購置2輛車,則Y的可能取值為2000,800,其分而列為
Y | 2000 | 800 |
P |
|
|
故 ;
③若購置3輛車,則Y的可能取值為3000,1800,600,其分布列為
Y | 3000 | 1800 | 600 |
P |
|
|
|
故 ;
④若購置4輛車,則Y的可能取值為4000,2800,1600,400其分布列為
Y | 4000 | 2800 | 1600 | 400 |
P |
|
|
|
|
故 ;
因?yàn)?400>2350>1850>1000,
所以為使運(yùn)輸公司每天的營業(yè)利潤最大,該公司應(yīng)購置3輛車
【解析】(1)計(jì)算配送量X在[120,60)上的概率,使用組中值代替各小組的平均值,利用加權(quán)平均數(shù)公式計(jì)算;(2)設(shè)每天的營業(yè)利潤為Y,對購置車輛數(shù)進(jìn)行依次討論,分別計(jì)算E(Y),根據(jù)E(Y)的大小關(guān)系作出結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用頻率分布直方圖和離散型隨機(jī)變量及其分布列,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
①原命題為真,它的否命題為假;
②原命題為真,它的逆命題不一定為真;
③一個(gè)命題的逆命題為真,它的否命題一定為真;
④一個(gè)命題的逆否命題為真,它的否命題一定為真.
A. ①② B. ②③
C. ③④ D. ②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,短軸長為2. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若圓O:x2+y2=1的切線l與曲線E相交于A、B兩點(diǎn),線段AB的中點(diǎn)為M,求|OM|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為4的正三角形ABC中,D,F(xiàn)分別為AB,AC的中點(diǎn),E為AD的中點(diǎn).將△BCD與△AEF分別沿CD,EF同側(cè)折起,使得二面角A﹣EF﹣D與二面角B﹣CD﹣E的大小都等于90°,得到如圖2所示的多面體.
(1)在多面體中,求證:A,B,D,E四點(diǎn)共同面;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),PQ垂直l于點(diǎn)Q,M,N分別為PQ,PF的中點(diǎn),MN與x軸相交于點(diǎn)R,若∠NRF=60°,則|FR|等于( )
A.
B.1
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:
B餐廳分?jǐn)?shù)頻數(shù)分布表 | |
分?jǐn)?shù)區(qū)間 | 頻數(shù) |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
(Ⅰ)在抽樣的100人中,求對A餐廳評分低于30的人數(shù);
(Ⅱ)從對B餐廳評分在[0,20)范圍內(nèi)的人中隨機(jī)選出2人,求2人中恰有1人評分在[0,10)范圍內(nèi)的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:
B餐廳分?jǐn)?shù)頻數(shù)分布表 | |
分?jǐn)?shù)區(qū)間 | 頻數(shù) |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
定義學(xué)生對餐廳評價(jià)的“滿意度指數(shù)”如下:
分?jǐn)?shù) | [0,30) | [30,50) | [50,60] |
滿意度指數(shù) | 0 | 1 | 2 |
(Ⅰ)在抽樣的100人中,求對A餐廳評價(jià)“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在A,B兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對A餐廳評價(jià)的“滿意度指數(shù)”比對B餐廳評價(jià)的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= +c(e=2.71828…是自然對數(shù)的底數(shù),c∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間、最大值;
(Ⅱ)討論關(guān)于x的方程|lnx|=f(x)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓G: 的兩個(gè)焦點(diǎn)分別為F1和F2 , 短軸的兩個(gè)端點(diǎn)分別為B1和B2 , 點(diǎn)P在橢圓G上,且滿足|PB1|+|PB2|=|PF1|+|PF2|.當(dāng)b變化時(shí),給出下列三個(gè)命題: ①點(diǎn)P的軌跡關(guān)于y軸對稱;
②存在b使得橢圓G上滿足條件的點(diǎn)P僅有兩個(gè);
③|OP|的最小值為2,
其中,所有正確命題的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com