10.在△ABC中,已知D是AB邊上一點,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,$\overrightarrow{CD}$=x$\overrightarrow{CA}$+y$\overrightarrow{CB}$,則y等于( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.-$\frac{2}{3}$

分析 根據(jù)三角形法則利用$\overrightarrow{CA}$,$\overrightarrow{CB}$表示出$\overrightarrow{CD}$得出x,y的值.

解答 解:∵$\overrightarrow{AD}$=2$\overrightarrow{DB}$,∴$\overrightarrow{AD}=\frac{2}{3}$$\overrightarrow{AB}$=$\frac{2}{3}\overrightarrow{CB}$-$\frac{2}{3}$$\overrightarrow{CA}$,
∴$\overrightarrow{CD}$=$\overrightarrow{CA}+\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{CA}$+$\frac{2}{3}$$\overrightarrow{CB}$.
∵$\overrightarrow{CD}$=x$\overrightarrow{CA}$+y$\overrightarrow{CB}$,
∴x=$\frac{1}{3}$,y=$\frac{2}{3}$.
故選A.

點評 本題考查了平面向量的基本定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓x2+y2+2x-1=0的圓心到直線y=x+3的距離為(  )
A.1B.2C.${\;}^{\sqrt{2}}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.圓ρ=r與圓ρ=-2rsin(θ+$\frac{π}{4}$)(r>0)的公共弦所在直線的方程為$\sqrt{2}$ρ(sinθ+cosθ)=-r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ)已知sinα+cosα=$\frac{12}{13}$,0<α<π,求sinα-cosα;
(Ⅱ)已知向量$\overrightarrow{a}$=(1,sin(π-α)),$\overrightarrow$=(2,cosα),且$\overrightarrow{a}$∥$\overrightarrow$,求sin2α+sinαcosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an},滿足a1=2,an=3an-1+4(n≥2),則an=4×3n-1-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)隨機變量X~N(2,σ2),且P(X≤4)=0.84,則P(X<0)=0.16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}的通項為an=$\frac{4}{11-2n}$,則滿足an+1<an的n的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=3+2cosθ\\ y=-4+2sinθ\end{array}\right.$(θ為參數(shù)).
(1)以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(2)已知A(2,0),B(0,2),圓C上任意一點M(x,y),求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.$cos(\frac{π}{2}-α)$=( 。
A.cosαB.sinαC.tanαD.0

查看答案和解析>>

同步練習(xí)冊答案