用指定方法法證明不等式:
3
+
5
2
+
6

(Ⅰ)分析法;
(Ⅱ)反證法.
考點(diǎn):反證法
專題:推理和證明
分析:(Ⅰ)分析法:尋找使不等式成立的充分條件,直到使不等式成立的充分條件已經(jīng)顯然具備為止.
(Ⅱ)反證法:假設(shè)要證的結(jié)論的反面成立,推出矛盾,可得假設(shè)錯(cuò)誤,從而證得原結(jié)論.
解答: 證明:(Ⅰ)分析法:要證
3
+
5
2
+
6
,只要證 (
3
+
5
)
2
(
2
+
6
)
2
,
即證8+2
15
>8+2
12
,即證
15
12

15
12
 顯然成立,故要證的不等式成立.
(Ⅱ)反證法:假設(shè)證
3
+
5
2
+
6
,則 (
3
+
5
)
2
(
2
+
6
)
2
,
故有 8+2
15
<8+2
12
,即
15
12
,矛盾,故假設(shè)不成立.
故要證的不等式成立.
點(diǎn)評(píng):本題主要考查用分析法和反證法證明不等式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(
1
2
+
3
2
i)3的值為( 。
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(3x+
π
4
).若α是第二象限的角,f(
α
3
)=
4
5
cos(α+
π
4
)cos2α,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用單調(diào)性定義證明函數(shù)f(x)=
x-2
x+1
在(-1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

乒乓球賽規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為
3
5
,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立,甲、乙的一局比賽中,甲先發(fā)球.
(Ⅰ)求開(kāi)始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(Ⅱ)ξ表示開(kāi)始第4次發(fā)球時(shí)乙的得分,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)A(1,4)、B(3,2)兩點(diǎn),且圓心在直線y=0上.
(1)求圓C的方程;
(2)判斷點(diǎn)P(2,4)與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+lnx,x∈(1,e).
(1)若f(x)≤0恒成立,求a的取值范圍;
(2)若方程f(x)=-
1
2
有兩個(gè)不等實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x+1)=
2
x+1
,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)正四面體中,第一個(gè)球是它的內(nèi)切球,第二個(gè)球是它的外接球,求這兩個(gè)球的表面積之比及體積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案