已知數(shù)列{an}是首項(xiàng)a1=1,公差大于0的等差數(shù)列,其前n項(xiàng)和為Sn,數(shù)列{bn}是首項(xiàng)b1=2的等比數(shù)列,且b2S2=16,b3S3=72.
(1)求an和bn;
(2)令c1=1,c2k=a2k-1,c2k+1=a2k+kbk(k=1,2,3,…),求數(shù)列{cn}的前2n+1項(xiàng)和T2n+1
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)直接利用等差數(shù)列和等比數(shù)列建立方程組求出數(shù)列的通項(xiàng)公式.
(2)根據(jù)構(gòu)造的新數(shù)列的特點(diǎn),利用乘公比錯(cuò)位相減法和等差數(shù)列的前n項(xiàng)和公式求出結(jié)果.
解答: 解:(1)設(shè)數(shù)列{an}的公差為d(d>0)數(shù)列{bn}的公比為q,
則an=1+(n-1)d,bn=2qn-1
依題意得b2S2=2q(2+d)=16,b3S3=2q2(3+3d)=72
由此得
q(2+d)=8
q2(1+d)=12

∵d>0,解得
d=2
q=2

∴an=2n-1,bn=2n
(2)∵T2n+1=c1+a1+(a2+b1)+a3+(a4+2•b2)+…+a2n-1+(a2n+nbn
=1+S2n+(b1+2b2+…+nbn
令A(yù)=b1+2b2+…+nbn
則A=2+2•22+…+n•2n2A
=22+2•23+…+(n-1)2n+n•2n+1-A
=2+22+…+2n-n•2n+1,
∴A=n•2n+1-2n+1+2
S2n=
2n(1+a2n)
2
=4n2
,
T2n+1=1+4n2+n•2n+1-2n+1+2
=3+4n2+(n-1)2n+1
點(diǎn)評:本題考查的知識(shí)要點(diǎn):數(shù)列通項(xiàng)公式的求法,乘公比錯(cuò)位相減法的應(yīng)用,數(shù)列前n項(xiàng)和的應(yīng)用.屬于中等題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體A BCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別在BB1,DD1上,且AE⊥A1B,AF⊥A1D.
(I)求證:A1C⊥平面AEF;
(Ⅱ)若AB=4,AD=3,AA1=5,求平面AEF和平面D1B1BD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2為橢圓
x2
4
+y2=1的左、右焦點(diǎn),過橢圓中心任作一直線與橢圓交于P,Q兩點(diǎn),當(dāng)四邊形PF1QF2面積最大時(shí),
PF1
PF2
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有窮數(shù)列{an}各項(xiàng)均不相等,將{an}的項(xiàng)從大到小重新排序后相應(yīng)的項(xiàng)數(shù)構(gòu)成新數(shù)列{pn},稱{pn}為{an}的“序數(shù)列”.例如數(shù)列:a1,a2,a3滿足a1>a3>a2,則其序數(shù)列{pn}為1,3,2.
(1)若x,y∈R+,x+y=2且x≠y,寫出數(shù)列:1,xy,
x2+y2
2
的序數(shù)列并說明理由;
(2)求證:有窮數(shù)列{an}的序數(shù)列{pn}為等差數(shù)列的充要條件是有窮數(shù)列{an}為單調(diào)數(shù)列;
(3)若項(xiàng)數(shù)不少于5項(xiàng)的有窮數(shù)列{bn}、{cn}的通項(xiàng)公式分別是bn=n•(
3
5
)n
(n∈N*),cn=-n2+tn(n∈N*),且{bn}的序數(shù)列與{cn}的序數(shù)列相同,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
4
-
y2
21
=1的左、右焦點(diǎn),P為雙曲線右支上的任意一點(diǎn),則
|PF1|2
|PF2| 
的最小值為( 。
A、24B、20C、16D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是( 。
A、若p∧q為假命題,則p,q均為假命題
B、命題“若x=y,則sinx=siny”為真命題
C、命題“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D、“x2=1”是“x=-1”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)P(0,2)作直線l交橢圓
x2
2
+y2=1于A,B兩點(diǎn).
(1)若△AOB的面積是
2
3
,求直線l的方程(其中O為原點(diǎn)).
(2)當(dāng)△AOB的面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an=2an-1+2n+1(n∈N*,n≥2),a1=2.
(1)設(shè)bn=
1
2n
(an+1),求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b∈R,函數(shù)f(x)=4ax3-2bx-a+b.當(dāng)0≤x≤1時(shí),證明:
(1)函數(shù)f(x)的最大值力|2a-b|+a;
(2)f(x)+|2a-b|+a≥0.

查看答案和解析>>

同步練習(xí)冊答案