A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
分析 斜率k存在,設(shè)直線AB為y=k(x-2),代入拋物線方程,利用(x1+2,y1-2)•(x2+2,y2-2)=0,即可求出k的值.
解答 解:由拋物線C:y2=8x得焦點(diǎn)(2,0),
由題意可知:斜率k存在,設(shè)直線AB為y=k(x-2),
代入拋物線方程,得到k2x2-(4k2+8)x+4k2=0,△>0,
設(shè)A(x1,y1),B(x2,y2).
∴x1+x2=4+$\frac{8}{{k}^{2}}$,x1x2=4.
∴y1+y2=$\frac{8}{k}$,y1y2=-16
又$\sqrt{2}$$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,
∴(x1+2,y1-2)•(x2+2,y2-2)=$\frac{16}{{k}^{2}}$-$\frac{16}{k}$+4=0
∴k=2.
故選D.
點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,考查向量的數(shù)量積公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 9 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“p或q”是假命題 | B. | 命題“p且q”是真命題 | ||
C. | 命題“非q”是假命題 | D. | 命題“p且‘非q’”是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com