分析 (Ⅰ)通過對x取值的分類討論,去掉絕對值符號,即可求得不等式f(x)≥1的解集;
(Ⅱ)利用等價轉(zhuǎn)化思想,可得|x-a|≤3,從而可得$\left\{\begin{array}{l}{a-3≤1}\\{a+3≥2}\end{array}\right.$,即可求出實(shí)數(shù)a的取值范圍.
解答 解:(Ⅰ)f(x)≥1,即|x-3|-|2x-2|≥1
x$≤1\$時,3-x+2x-2≥1,∴x≥0,∴0≤x≤1;
1<x<3時,3-x-2x+2≥1,∴x≤$\frac{4}{3}$,∴1<x≤$\frac{4}{3}$;
x≥3時,x-3-2x+2≥1,∴x≤-2∴1<x≤$\frac{4}{3}$,無解,…(4分)
所以f(x)≥1解集為[0,$\frac{4}{3}$].…(5分)
(Ⅱ)當(dāng)x∈[1,2]時,f(x)-|2x-5|≤0可化為|x-a|≤3,
∴a-3≤x≤a+3,…(7分)
∴$\left\{\begin{array}{l}{a-3≤1}\\{a+3≥2}\end{array}\right.$,…(8分)
∴-1≤a≤4.…(10分)
點(diǎn)評 本題考查絕對值不等式的解法,著重考查等價轉(zhuǎn)化思想、分類討論思想與綜合運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (1,1) | C. | (3,1) | D. | (5,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22 | B. | 17 | C. | 7 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com