A. | $\frac{3}{4}π$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{8}$ |
分析 由條件利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦、余弦函數(shù)的奇偶性,得出結(jié)論.
解答 解:將函數(shù)y=$2{cos^2}(x-\frac{π}{4})$=cos(2x-$\frac{π}{2}$)+1=sin2x+1的圖象沿x軸向右平移a(a>0)個單位后,
所得函數(shù)的圖象對應(yīng)的函數(shù)解析式為 y=sin2(x-a)+1,
根據(jù)所得圖象關(guān)于y軸對稱,∴2a=kπ+$\frac{π}{2}$,k∈Z,即a=$\frac{kπ}{2}$+$\frac{π}{4}$,
則a的最小為$\frac{π}{4}$,
故選:C.
點評 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦、余弦函數(shù)的奇偶性,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7\sqrt{2}}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②③ | B. | ②④⑤ | C. | ④⑤ | D. | ②⑤ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{5π}{12}$個單位長度 | B. | 向右平移$\frac{5π}{12}$個單位長度 | ||
C. | 向左平移$\frac{5π}{6}$個單位長度 | D. | 向右平移$\frac{5π}{6}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com