17.已知向量$\vec a$,$\vec b$的夾角為60°,且$|{\vec a}|=2$,$|{\vec b}|=1$,當(dāng)$|{\vec a-x\vec b}|$取得最小值時,實數(shù)x的值為(  )
A.2B.-2C.1D.-1

分析 計算($\overrightarrow{a}-x\overrightarrow$)2得出關(guān)于x的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)得出x的值.

解答 解:$\overrightarrow{a}•\overrightarrow$=2×1×cos60°=1.
($\overrightarrow{a}-x\overrightarrow$)2=${\overrightarrow{a}}^{2}-2x\overrightarrow{a}•\overrightarrow+{x}^{2}{\overrightarrow}^{2}$=x2-2x+4=(x-1)2+3.
∴當(dāng)x=1時,($\overrightarrow{a}-x\overrightarrow$)2取得最小值3,即|$\overrightarrow{a}-x\overrightarrow$|取得最小值$\sqrt{3}$.
故選:C.

點評 本題考查了平面向量的數(shù)量積運算,二次函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)A($\frac{7}{2}$,0)、B(0,2)、M(1-m,m+4),且四邊形MBOA有外接圓(其中O為原點),則M的坐標(biāo)為(2,3)或($\frac{15}{4}$,$\frac{5}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.(2x-ay)2(x+y)6的展開式中x3y5的系數(shù)為-16,則a的值為1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a是函數(shù)$f(x)={2^x}-{log_{\frac{1}{2}}}$x的零點,若x0>a,則f(x0)的值滿足( 。
A.f(x0)=0B.f(x0)<0C.f(x0)>0D.f(x0)的符號不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.表面積為3π的圓錐,它的側(cè)面展開圖是一個半圓,則該圓錐的底面半徑為( 。
A.$\frac{{2\sqrt{15}}}{5}$B.$\frac{{\sqrt{15}}}{5}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一個焦點為F(3,0),且雙曲線的漸進(jìn)線與圓(x-3)2+y2=1相切,則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{8}$-y2=1..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點P(0,1)到雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的距離為$\frac{1}{3}$,則雙曲線C的離心率為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)y=$2{cos^2}(x-\frac{π}{4})$的圖象沿x軸向右平移a(a>0)個單位后,所得圖象關(guān)于y軸對稱,則a的最小值為( 。
A.$\frac{3}{4}π$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知P是直線BC上異于B,C的任意一點,O是直線BC外的任意一點,若存在實數(shù)x,y使得$\overrightarrow{OP}=x\overrightarrow{OB}+y\overrightarrow{OC}$,則x+y=1.

查看答案和解析>>

同步練習(xí)冊答案