20.若a,b∈R,則“$\frac{1}{a}$<$\frac{1}$”是“$\frac{ab}{{a}^{3}-^{3}}$>0”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 ?a,b∈R,a2+ab+b2=$(a+\frac{1}{2}b)^{2}$+$\frac{3}{4}$b2≥0,當(dāng)且僅當(dāng)a=b=0時(shí)取等號(hào).可得$\frac{ab}{{a}^{3}-^{3}}$>0?(a-b)ab>0,?“$\frac{1}{a}$<$\frac{1}$”.

解答 解:?a,b∈R,a2+ab+b2=$(a+\frac{1}{2}b)^{2}$+$\frac{3}{4}$b2≥0,當(dāng)且僅當(dāng)a=b=0時(shí)取等號(hào).
∴$\frac{ab}{{a}^{3}-^{3}}$>0?(a-b)ab>0,?“$\frac{1}{a}$<$\frac{1}$”.
∴“$\frac{1}{a}$<$\frac{1}$”是“$\frac{ab}{{a}^{3}-^{3}}$>0”的充要條件.
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)、不等式的性質(zhì)與解法、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{3}$-y2=1的右焦點(diǎn)是拋物線y2=2px(p>0)的焦點(diǎn),直線y=kx+m與拋物線交于A,B兩個(gè)不同的點(diǎn),點(diǎn)M(2,2)是AB的中點(diǎn),則△OAB(O為坐標(biāo)原點(diǎn))的面積是(  )
A.4$\sqrt{3}$B.3$\sqrt{13}$C.$\sqrt{14}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x0,滿足f(-x0)=-f(x0),則稱f(x)為“M類函數(shù)”.
(1)已知函數(shù)f(x)=sin(x+$\frac{π}{3}$),試判斷f(x)是否為“M類函數(shù)”?并說明理由;
(2)設(shè)f(x)=2x+m是定義在[-1,1]上的“M類函數(shù)”,求實(shí)數(shù)m的最小值;
(3)若f(x)=$\left\{\begin{array}{l}{log_2}({x^2}-2mx)\\-3\end{array}\right.\begin{array}{l}{,\;\;x≥2}\\{,\;\;x<2}\end{array}$為其定義域上的“M類函數(shù)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)P(x,y),其中x,y∈N,則滿足x+y≤4的點(diǎn)P的個(gè)數(shù)為15.一般地,滿足x+y≤n(n∈N)的點(diǎn)P的個(gè)數(shù)應(yīng)為$\frac{(n+1)(n+2)}{2}$個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知共面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=3,$\overrightarrow$+$\overrightarrow{c}$=2$\overrightarrow{a}$,且|$\overrightarrow$|=|$\overrightarrow$-$\overrightarrow{c}$|.若對(duì)每一個(gè)確定的向量$\overrightarrow$,記|$\overrightarrow$-t$\overrightarrow{a}$|(t∈R)的最小值dmin,則當(dāng)$\overrightarrow$變化時(shí),dmin的最大值為( 。
A.$\frac{4}{3}$B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(2x+$\frac{1}{x}$-1)5的展開式中常數(shù)項(xiàng)是-161.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=4n,若不等式Sn+8≥λn對(duì)任意的n∈N*都成立,則實(shí)數(shù)λ的取值范圍為(-∞,10].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線x+ay-1=0與2x+4y-3=0平行,則${({x+\frac{1}{x}-a})^5}$的展開式中x的系數(shù)為210.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.下列結(jié)論正確的是④.
①(x2-4x)(x+$\frac{1}{x}$)9的展開式中x2的系數(shù)為-210;
②在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患肺;
③已知命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1”的逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù)”,是真命題;
④不等式ax2-(2a-3)x-1>0對(duì)?x>1恒成立的充要條件是0≤a≤2.

查看答案和解析>>

同步練習(xí)冊(cè)答案