12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=4n,若不等式Sn+8≥λn對任意的n∈N*都成立,則實(shí)數(shù)λ的取值范圍為(-∞,10].

分析 先根據(jù)an=4n得到數(shù)列{an}是以4為首項(xiàng),以4為公差的等差數(shù)列,再根據(jù)等差數(shù)列的求和公式得到Sn=2n+2n2,原不等式轉(zhuǎn)化為λ≤2(n+$\frac{4}{n}$)+2,根據(jù)基本不等式即可求出答案.

解答 解:∵數(shù)列{an}的前n項(xiàng)和為Sn,且an=4n,
當(dāng)n=1時(shí),a1=4,
∵an-an-1=4n-4(n-1)=4,
∴數(shù)列{an}是以4為首項(xiàng),以4為公差的等差數(shù)列,
∴Sn=$\frac{n(4+4n)}{2}$=2n+2n2
∵不等式Sn+8≥λn對任意的n∈N*都成立,
∴2n+2n2+8≥λn對任意的n∈N*都成立,
即λ≤2(n+$\frac{4}{n}$)+2,
∵n+$\frac{4}{n}$≥2$\sqrt{n•\frac{4}{n}}$=4,當(dāng)且僅當(dāng)n=2時(shí)取等號,
∴λ≤2×4+2=10,
故實(shí)數(shù)λ的取值范圍為(-∞,10],
故答案為:(-∞,10].

點(diǎn)評 本題考查了等差數(shù)列的定義和等差數(shù)列的求和公式和不等式恒成立問題,以及基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一個(gè)頂點(diǎn)在拋物線x2=4y的準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),M,N為橢圓上的兩個(gè)不同的動點(diǎn),直線OM,ON的斜率分別為k1和k2,若k1k2=-$\frac{1}{4}$,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線方程為$\frac{{x}^{2}}{{m}^{2}+4}$-$\frac{{y}^{2}}{^{2}}$=1,若其過焦點(diǎn)的最短弦長為2,則該雙曲線的離心率的取值范圍是(1,$\frac{\sqrt{6}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a,b∈R,則“$\frac{1}{a}$<$\frac{1}$”是“$\frac{ab}{{a}^{3}-^{3}}$>0”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線C:y2=4x的焦點(diǎn)為F,點(diǎn)A(0,-$\sqrt{3}$),若線段FA與拋物線C相交于點(diǎn)M,則|MF|=(  )
A.$\frac{4}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xoy中,過M(2,1)的直線l的傾斜角為$\frac{π}{4}$,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,圓C的極坐標(biāo)方程為ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求直線l的參數(shù)方程與圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于A,B兩點(diǎn),求$\frac{1}{|MA|}$+$\frac{1}{|MB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖同心圓中,大、小圓的半徑分別為2和1,點(diǎn)P在大圓上,PA與小圓相切于點(diǎn)A,Q為小圓上的點(diǎn),則$\overrightarrow{PA}•\overrightarrow{PQ}$的取值范圍是[3-$\sqrt{3}$,3+$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知等比數(shù)列{an}首項(xiàng)為2,前2m項(xiàng)滿足a1+a3+…+a2m-1=170,a2+a4+…+a2m=340,則正整數(shù)m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),若P(ξ<2)=P(ξ>6)=0.15,則P(2≤ξ<4)等于(  )
A.0.3B.0.35C.0.5D.0.7

查看答案和解析>>

同步練習(xí)冊答案