【題目】某校高三共有800名學(xué)生,為了解學(xué)生3月月考生物測(cè)試情況,根據(jù)男女學(xué)生人數(shù)差異較大,從中隨機(jī)抽取了200名學(xué)生,記錄他們的分?jǐn)?shù),并整理得如圖頻率分布直方圖.

(1)若成績(jī)不低于60分的為及格,成績(jī)不低于80分的為優(yōu)秀,試估計(jì)總體中合格的有多少人??jī)?yōu)秀的有多少人?

(2)已知樣本中有一半的女生分?jǐn)?shù)不小于80,且樣本中不低于80分的男女生人數(shù)之比2:3,試估計(jì)總體中男生和女生人數(shù)的比例.

【答案】(1)及格的有640人,優(yōu)秀的有160人.(2)

【解析】試題分析:1根據(jù)頻率分布直方圖得到成績(jī)及格和成績(jī)優(yōu)秀的頻率,根據(jù)頻數(shù)=頻率×樣本容量”得的人數(shù);(2根據(jù)頻率分布直方圖得到樣本中不低于80分的女生人數(shù)為40人,所以樣本中分?jǐn)?shù)不小于80的女生人數(shù)為,從而得到樣本中的女生人數(shù)為,男生人數(shù)為,然后根據(jù)分層抽樣的原理可得男生和女生人數(shù)的估計(jì)比例。

試題解析

(1)根據(jù)頻率分布直方圖可知,

總體中及格的人數(shù)估計(jì)為,

總體中優(yōu)秀的人數(shù)估計(jì)為,

所以估計(jì)總體中及格的有640人,優(yōu)秀的有160人. 

(2)由題意可知,樣本中分?jǐn)?shù)不小于80的學(xué)生人數(shù)為,

所以樣本中分?jǐn)?shù)不小于80的女生人數(shù)為

所以樣本中的女生人數(shù)為,男生人數(shù)為,

男生和女生人數(shù)的比例為

所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計(jì)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上、下焦點(diǎn)分別為,上焦點(diǎn)到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=

(I)若P是橢圓C上任意一點(diǎn),求的取值范圍;

(II)設(shè)過(guò)橢圓C的上頂點(diǎn)A的直線與橢圓交于點(diǎn)B(B不在y軸上),垂直于的直線與交于點(diǎn)M,與軸交于點(diǎn)H,若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程ln(2x+1)=ln(x2﹣2);
求函數(shù)f(x)=( 2x+2×( x(x≤﹣1)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2bx+5(b∈R).
(1)若b=2,試解不等式f(x)<10;
(2)若f(x)在區(qū)間[﹣4,﹣2]上的最小值為﹣11,試求b的值;
(3)若|f(x)﹣5|≤1在區(qū)間(0,1)上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+(k﹣1)ax(a>且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(1)>0,試判斷函數(shù)單調(diào)性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范圍;
(3)若f(1)= ,設(shè)g(x)=a2x+a2x﹣2mf(x),g(x)在[1,+∞)上的最小值為﹣1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了展示中華漢字的無(wú)窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開(kāi)展《中國(guó)漢字聽(tīng)寫(xiě)大會(huì)》的活動(dòng).為響應(yīng)學(xué)校號(hào)召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績(jī)畫(huà)出莖葉圖,如圖所示,甲的成績(jī)中有一個(gè)數(shù)的個(gè)位數(shù)字模糊,在莖葉圖中用表示.(把頻率當(dāng)作概率).

(1)假設(shè),現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

(2)假設(shè)數(shù)字的取值是隨機(jī)的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知),定義.

(1)求函數(shù)的極值

(2)若,且存在使,求實(shí)數(shù)的取值范圍;

(3)若,試討論函數(shù))的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家擬在2017年舉行促銷(xiāo)活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷(xiāo)售量(即該廠的年產(chǎn)量)(單位:萬(wàn)件)與年促銷(xiāo)費(fèi)用(單位:萬(wàn)元)()滿足 為常數(shù)),如果不搞促銷(xiāo)活動(dòng),則該產(chǎn)品的年銷(xiāo)售量只能是1萬(wàn)件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元.每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷(xiāo)售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

(1)將2017年該產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)表示為年促銷(xiāo)費(fèi)用(單位:萬(wàn)元)的函數(shù);

(2)該廠家2017年的促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與圓,點(diǎn)在圓上,點(diǎn)在圓上.

(1)求的最小值;

(2)直線上是否存在點(diǎn),滿足經(jīng)過(guò)點(diǎn)由無(wú)數(shù)對(duì)相互垂直的直線,它們分別與圓和圓相交,并且直線被圓所截得的弦長(zhǎng)等于直線被圓所截得的弦長(zhǎng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案