分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f($\frac{π}{2}$),f′($\frac{π}{2}$)的值,代入切線方程整理即可;
(2)當(dāng)a=1時(shí),函數(shù)f(x)在[-π,π]上的最大值及最小值,即為f(x)在[0,π]上的最大值及最小值,求出導(dǎo)數(shù),求得單調(diào)性,即可得到最值;
(3)對(duì)于任意的實(shí)數(shù)x恒有f(x)≥0,即有cosx+ax2-1≥0,即ax2≥1-cosx≥0,顯然a≥0,運(yùn)用參數(shù)分離和二倍角公式可得2a≥( $\frac{sin\frac{x}{2}}{\frac{x}{2}}$)2,求出右邊函數(shù)的范圍,即可得到a的范圍.
解答 解:(1)a=0時(shí),f(x)=cosx-1,f′(x)=-sinx,
∴f′($\frac{π}{2}$)=-1,f($\frac{π}{2}$)=-1,
故切線方程是:y+1=-(x-$\frac{π}{2}$),
即x+y+$\frac{π}{2}$+1=0;
(2)當(dāng)a=1時(shí),f(x)=cosx+x2-1,f(-x)=f(x),是偶函數(shù),
函數(shù)f(x)在[-π,π]上的最大值及最小值,
即為f(x)在[0,π]上的最大值及最小值,
此時(shí)f(x)=cosx+x2-1,導(dǎo)數(shù)為f′(x)=2x-sinx,0≤x≤π,
令g(x)=2x-sinx,導(dǎo)數(shù)為2-cosx>0,即g(x)遞增,
即有g(shù)(x)≥g(0)=0,則f′(x)≥0,即f(x)在[0,π]遞增,
x=0時(shí),取得最小值0,x=π時(shí),取得最大值π2-2,
則有函數(shù)f(x)在[-π,π]上的最大值π2-2,
最小值為0;
(3)對(duì)于任意的實(shí)數(shù)x恒有f(x)≥0,即有cosx+ax2-1≥0,
即ax2≥1-cosx≥0,顯然a≥0,
x=0時(shí),顯然成立;由偶函數(shù)的性質(zhì),只要考慮x>0的情況.
當(dāng)x>0時(shí),a≥$\frac{1-cosx}{{x}^{2}}$=$\frac{{2sin}^{2}\frac{x}{2}}{{x}^{2}}$,即為2a≥( $\frac{sin\frac{x}{2}}{\frac{x}{2}}$)2,
由x>0,則$\frac{x}{2}$=t>0,考慮sint-t的導(dǎo)數(shù)為cost-1≤0,
即sint-t遞減,即有sint-t<0,即sint<t,
則有 $\frac{sint}{t}$<1,故( $\frac{sin\frac{x}{2}}{\frac{x}{2}}$)2<1,
即有2a≥1,解得a≥$\frac{1}{2}$.
則實(shí)數(shù)a的取值范圍為[$\frac{1}{2}$,+∞).
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)性和最值,同時(shí)考查函數(shù)的奇偶性的判斷和運(yùn)用,考查不等式恒成立問題的解法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | 3-6i | C. | -6i | D. | 9-6i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,4) | B. | (0,1) | C. | (0,4) | D. | (-4,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com