12.實數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y≤1}\end{array}\right.$,則z=y-x的最大值是( 。
A.1B.2C.3D.4

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y≤1}\end{array}\right.$畫出平面區(qū)域,如圖所示.

A(0,1),
化目標函數(shù)z=y-x為y=x+z,
由圖可知,當直線y=x+z過點A時,目標函數(shù)取得最大值.
∴zmax=1-0=1.
故選:A.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,四邊形ABCD中,AB=3,BC=2$\sqrt{2}$,AC=$\sqrt{5}$,∠ADC=3∠ABC.
(Ⅰ)求∠ADC的大;
(Ⅱ)若BD•cos∠ABD=AB,求BD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,m)$,若$\overrightarrow a⊥\overrightarrow b$,則$|\overrightarrow b|$=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設(shè)P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1右支上一點,F(xiàn)1、F2是左、右焦點,若tan∠PF1F2=$\frac{1}{2}$,sin∠PF2F1=$\frac{2\sqrt{5}}{5}$,則此雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)$y=\frac{1}{{\sqrt{{{log}_2}({4x-1})}}}$的定義域為( 。
A.$(0,\frac{1}{2})$B.$(\frac{3}{4},+∞)$C.$(\frac{1}{2},+∞)$D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.數(shù)列{an}是等差數(shù)列,且a1>0,若a1008+a1009>0,a1008•a1009<0同時成立,則使得Sn>0成立的n的最大值為( 。
A.2016B.2017C.2018D.2019

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列四個結(jié)論:
①若“p∧q是真命題”,則“¬p可能是真命題”;
②命題“?x0∈R,x${\;}_{0}^{2}$-x-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“φ=$\frac{π}{2}$”是“y=sin(2x+φ)為偶函數(shù)”的充要條件;
④當a<0時,冪函數(shù)y=xa在區(qū)間(0,+∞)上單調(diào)遞減.
其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.以下命題正確的是:①④.
①把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個單位,可得到y(tǒng)=3sin2x的圖象;
②四邊形ABCD為長方形,AB=2,BC=1,O為AB中點,在長方形ABCD內(nèi)隨機取一點P,取得的P點到O的距離大于1的概率為1-$\frac{π}{2}$;
③為了了解800名學生對學校某項教改試驗的意見,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔為40;
④已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為$\stackrel{∧}{y}$=1.23x+0.08.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列命題中,真命題是(  )
A.?x∈R,x2≤x-2
B.?x∈R,2x>2-x2
C.函數(shù)f(x)=$\frac{1}{x}$為定義域上的減函數(shù)
D.“被2整除的整數(shù)都是偶數(shù)”的否定是“至少存在一個被2整除的整數(shù)不是偶數(shù)”

查看答案和解析>>

同步練習冊答案