已知函數(shù)f(x)=數(shù)學(xué)公式ax3+2x2,其中a>0
(1)當(dāng)a=3時(shí),求過點(diǎn)(數(shù)學(xué)公式)且與曲線y=f(x)(x>0)相切的直線方程
(2)若f(x)在區(qū)間[-1,1]上的最小值為-2,求的值.

解:(1)a=3時(shí)f(x)=x3+2x2f′(x)=3x2+4x
設(shè)切點(diǎn)(m,m3+2m2)(m>0),則在切點(diǎn)處的切線的斜率為k=3m2+4m
∴切線方程y-m3-2m2=(3m2+4m)(x-m)
∵過(,0)
∴-m3-2m2=(3m2+4m)(-m)即7m3+m2-8m=0
m=0(舍)或m=1或m=-
∴所求的切線方程7x-y-4=0
(2)f(x)=ax3+2x2∴f′(x)=ax2+4x=x(ax+4)
因a>0,f′(x)>0,x<-或x>0,f′(x)<0,-<x<0
y=f(x)在x<-或x>0上單調(diào)增,在-<x<0上單調(diào)減.
當(dāng)-1≤-即a≥4時(shí)y=f(x)在[-1,-],[0,1]上單調(diào)增,在[-,0]上單調(diào)減,f(x)的最小值在x=-1或x=0時(shí)取到,
f(0)=0不符合題意,f(-1)=-a+2,a=12
當(dāng)-<-1即0<a<4時(shí)y=f(x)在[0,1]上單調(diào)增,在[-1,0]上單調(diào)減
∴y=f(x)的最小值在x=0取到
而f(0)=0≠-2(舍)
∴a=12.
分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義可知在x處的導(dǎo)數(shù)等于切線的斜率,建立等式關(guān)系,求出切點(diǎn)的橫坐標(biāo),代入函數(shù)關(guān)系式,求出切點(diǎn)坐標(biāo),最后利用點(diǎn)斜式方程寫出切線方程即可.
(2)先求導(dǎo)f′(x)=ax2+4x=x(ax+4),再對(duì)a進(jìn)行分類討論:當(dāng)-1≤-,當(dāng)-<-1;分別求得f(x)在區(qū)間[-1,1]上的最小值,從而列出關(guān)于a的方程即可求得a=12.
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案