分析 (Ⅰ)求解方程得a2=3,a5=9,則a1+d=3,a1+4d=9,求出首項和公差可得他出事了的通項公式,再由數列{bn}滿足3n-1bn=nan+1-(n-1)an,可得數列{bn}的通項公式;
(Ⅱ)利用錯位相減法求出數列{bn}的前n項和Tn,求解不等式Tn<7 可得n的最大值.
解答 解:(Ⅰ)∵數列{an}是公差d為正數的等差數列,∴a2<a5,
由x2-12x+27=0,解得a2=3,a5=9.
∴a1+d=3,a1+4d=9,解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
數列{bn}滿足3n-1bn=nan+1-(n-1)an,
∴3n-1bn=n(2n+1)-(n-1)(2n-1),
∴bn=$\frac{4n-1}{{3}^{n-1}}$;
(Ⅱ)數列{bn}的前n項和Tn=$\frac{3}{1}+\frac{7}{3}+\frac{11}{{3}^{2}}$+…+$\frac{4n-1}{{3}^{n-1}}$,
$\frac{1}{3}{T}_{n}$=$\frac{3}{3}+\frac{7}{{3}^{2}}+…+\frac{4n-5}{{3}^{n-1}}+\frac{4n-1}{{3}^{n}}$,
兩式作差得:$\frac{2}{3}{T}_{n}$=3+4($\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$)$-\frac{4n-1}{{3}^{n}}$=$3+4•\frac{\frac{1}{3}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}-\frac{4n-1}{{3}^{n}}$=$5-\frac{4n+5}{{3}^{n}}$.
∴${T}_{n}=\frac{15}{2}-\frac{4n+5}{2•{3}^{n-1}}$;
由Tn<7,得:$\frac{15}{2}-\frac{4n+5}{2•{3}^{n-1}}$<7,即3n-1<4n+5.
解得:n≤3.
∴使Tn<7 時n的最大值為3.
點評 本題考查數列遞推式,考查數列的函數特性,訓練了錯位相減法求數列的和,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $-\frac{7}{8}$ | C. | $\frac{8}{9}$ | D. | $-\frac{8}{9}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com