【題目】在平面直角坐標(biāo)系中,已知拋物線:,過拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于、兩點(diǎn),且的周長為.
(1)求拋物線的方程;
(2)若直線過焦點(diǎn)且與拋物線相交于、兩點(diǎn),過點(diǎn)、分別作拋物線的切線、,切線與相交于點(diǎn),求:的值.
【答案】(1);(2)0.
【解析】
(1)先求得A,B兩點(diǎn)坐標(biāo),利用計(jì)算的周長可得p,進(jìn)而求得拋物線方程;
(2)利用導(dǎo)數(shù)的幾何意義求得切線與的方程,聯(lián)立直線與拋物線方程,利用韋達(dá)定理及與的交點(diǎn)P,可得,再利用焦半徑公式求得,可得結(jié)果.
(1)由題意知焦點(diǎn)的坐標(biāo)為,將代入拋物線的方程可求得點(diǎn)、的坐標(biāo)分別為、,
有,,可得的周長為,有,得.
故拋物線的方程為.
(2)由(1)知拋物線的方程可化為,求導(dǎo)可得.
設(shè)點(diǎn)、的坐標(biāo)分別為、.
設(shè)直線的方程為(直線的斜率顯然存在).
聯(lián)立方程消去整理為:,可得.
有,.
可得直線的方程為,整理為.
同理直線的方程為.
聯(lián)立方程,解得,則點(diǎn)的坐標(biāo)為.
由拋物線的幾何性質(zhì)知,,
.
有 .
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“文化強(qiáng)國建設(shè)”號(hào)召,并增加學(xué)生們對古典文學(xué)的學(xué)習(xí)興趣,雅禮中學(xué)計(jì)劃建設(shè)一個(gè)古典文學(xué)熏陶室.為了解學(xué)生閱讀需求,隨機(jī)抽取200名學(xué)生做統(tǒng)計(jì)調(diào)查.統(tǒng)計(jì)顯示,男生喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女生喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯(cuò)誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)學(xué)生積極參與閱讀古典文學(xué)書籍,語文教研組計(jì)劃牽頭舉辦雅禮教育集團(tuán)古典文學(xué)閱讀交流會(huì).經(jīng)過綜合考慮與對比,語文教研組已經(jīng)從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男生代表和2名女生代表參加交流會(huì),記為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意,任意,不等式恒成立時(shí)最大的記為,當(dāng)時(shí),的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,其焦距為,點(diǎn)在橢圓上,,直線的斜率為(為半焦距)·
(1)求橢圓的方程;
(2)設(shè)圓的切線交橢圓于兩點(diǎn)(為坐標(biāo)原點(diǎn)),求證:;
(3)在(2)的條件下,求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線 是圓心的極坐標(biāo)為()且經(jīng)過極點(diǎn)的圓
(1)求曲線C1的極坐標(biāo)方程和C2的普通方程;
(2)已知射線分別與曲線C1,C2交于點(diǎn)A,B(點(diǎn)B異于坐標(biāo)原點(diǎn)O),求線段AB的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,過曲線外的一點(diǎn)(其中,為銳角)作平行于的直線與曲線分別交于.
(Ⅰ) 寫出曲線和直線的普通方程(以極點(diǎn)為原點(diǎn),極軸為 軸的正半軸建系);
(Ⅱ)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月10日21時(shí)整,全球六地(上海和臺(tái)北、布魯塞爾、圣地亞哥、東京和華盛頓同時(shí)召開新聞發(fā)布會(huì),宣布人類首次利用虛擬射電望遠(yuǎn)鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個(gè)中心為黑色的明亮環(huán)狀結(jié)構(gòu),看上去有點(diǎn)像個(gè)橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉(zhuǎn)的吸積盤.某同學(xué)作了一張黑洞示意圖,如圖所示,由兩個(gè)同心圓和半個(gè)同心圓環(huán)構(gòu)成圓及圓環(huán)的半徑從內(nèi)到外依次為2,3,4,5個(gè)單位在圖中隨機(jī)任取一點(diǎn),則該點(diǎn)取自陰影的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐的頂點(diǎn)為A,高和底面的半徑相等,BE是底面圓的一條直徑,點(diǎn)D為底面圓周上的一點(diǎn),且∠ABD=60°,則異面直線AB與DE所成角的正弦值為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com