17.已知圓錐的高為h,底半徑為r,用我們計算拋物線下曲邊梯形面積的思路,推導圓錐體積的計算公式.
[提示:(1)用若干張平行于圓錐底面的平面把它切成n塊厚度相等的薄片;
(2)用一系列圓柱的體積近似地代替對應的薄片,圓柱的高為$\frac{h}{n}$,底半徑順次為:$\frac{r}{n}$,$\frac{2r}{n}$,$\frac{3r}{n}$…,$\frac{(n-1)r}{n}$,r;
(3)問題歸結(jié)為計算和式V(n)=$\frac{h}{n}$×(12+22+…+n2)×$\frac{π{r}^{2}}{{n}^{2}}$,當n越來越大時所趨向的值.].

分析 利用極限的定義進行分割、近似代換和求極限的方法,進行推到

解答 解:(1)若干張平行于圓錐底面的平面把它切成n塊厚度相等的薄片;
(2)用一系列圓柱的體積近似地代替對應的薄片,圓柱的高為$\frac{h}{n}$,底半徑順次為:$\frac{r}{n}$,$\frac{2r}{n}$,$\frac{3r}{n}$…,$\frac{(n-1)r}{n}$,r;
(3)問題歸結(jié)為計算和式V(n)=$\frac{h}{n}$×(12+22+…+n2)×$\frac{π{r}^{2}}{{n}^{2}}$,當n越來越大時所趨向的值.
(對V求極限V=$\underset{lim}{n→∞}$$\frac{h}{n}$×(12+22+…+n2)×$\frac{π{r}^{2}}{{n}^{2}}$
=$\underset{lim}{n→∞}$$\frac{h}{n}•\frac{1}{6}n(n+1)(2n+1)•\frac{π{r}^{2}}{{n}^{2}}$
=$\frac{hπ{r}^{2}}{6}$$\underset{lim}{n→∞}$$\frac{2{n}^{2}+3n+1}{{n}^{2}}$
=$\frac{π{r}^{2}h}{3}$
=$\frac{1}{3}{S}_{底}h$
故圓錐的體積等于$\frac{1}{3}$的圓柱體的體積

點評 利用極限的思想對圓錐進行分割、近似代換和求極限,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.在平面直角坐標系中,一束光線從點M(-2,3)出發(fā),被直線y=x-1反射后到達點N(1,6),則這束光線從M到N所經(jīng)過的路程為( 。
A.10$\sqrt{3}$B.3$\sqrt{10}$C.2$\sqrt{10}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知角α終邊上有一點P到原點的距離為4,α=60°,則點P的坐標是(2,2$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設函數(shù)$f(x)=|{\frac{1}{2}x+1}|+|{x-1}|(x∈R)$的最小值為a.
(1)求a;
(2)已知兩個正數(shù)m,n滿足m2+n2=a,求$\frac{1}{m}+\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)定義域為[-1,1],若對于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0.
(1)證明:f(x)為奇函數(shù);
(2)證明:f(x)在[-1,1]上是增加的;
(3)設f(1)=1,若f(x)<m-2am+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某校在2 015年11月份的高三期中考試后,隨機地抽取了50名學生的數(shù)學成績并進行了分析,結(jié)果這50名同學的成績?nèi)拷橛?0分到140分之間.現(xiàn)將結(jié)果按如下方式分為6組,第一組[80,90),第二組[90,100),…第六組[130,140],得到如圖所示的頻率分布直方圖.
(Ⅰ)試估計該校數(shù)學的平均成績(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表);
(Ⅱ)這50名學生中成績在120分以上的同學中任意抽取3人,該3人在130分(含130分)以上的人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知某大城市對每人車流量擁擠等級規(guī)定如表:
車流量(萬輛) 0~10 11~50 51~70 71~80 81~100>100
擁擠等級優(yōu)輕度擁擠中度擁擠重度擁擠嚴重擁擠
該城市對國慶節(jié)7天的車流量作出如下表的統(tǒng)計數(shù)據(jù):
日期10月1日10月2日10月3日10月4日10月5日10月6日107日
車流量(萬輛)120110857560105110
(1)某人國慶節(jié)連續(xù)2天到該城市游玩,求這2天他遇到的車流量擁擠等級均為嚴重擁擠的概率;
(2)從國慶節(jié)期間隨機選取2天,記這2天該城市車流量擁擠等級不是“嚴重擁擠”的天數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,長軸長為等于圓R:x2+(y-2)2=4的直徑,過點P(0,1)的直線l與橢圓C交于兩點A,B,與圓R交于兩點M,N
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:直線RA,RB的斜率之和等于零;
(Ⅲ)求|AB|•|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)$f(x)=x-\frac{1}{x}-blnx(b∈R)$,且曲線y=f(x)在點(1,f(1))處的切線與y軸垂直.
(Ⅰ)求b的值;
(Ⅱ)設g(x)=x2,求證g(x)>f(x)-2ln2.

查看答案和解析>>

同步練習冊答案