【題目】已知,點滿足,記點的軌跡為.斜率為的直線過點,且與軌跡相交于兩點.
(1)求軌跡的方程;
(2)求斜率的取值范圍;
(3)在軸上是否存在定點,使得無論直線繞點怎樣轉(zhuǎn)動,總有成立?如果存在,求出定點;如果不存在,請說明理由.
【答案】(1);(2);(3)存在,.
【解析】
(1)根據(jù)雙曲線的定義即可求得方程;
(2)聯(lián)立直線與雙曲線方程,轉(zhuǎn)化成方程有解問題;
(3)假設(shè)存在點,聯(lián)立直線和雙曲線整理成二次方程,根據(jù)結(jié)合韋達定理求解.
(1)因為,點滿足,
所以點的軌跡為以為焦點,實軸長為2的雙曲線的右支,
設(shè)其方程,則,
所以軌跡的方程:;
(2)斜率為的直線過點,直線方程為,代入,
,即有兩個不等正根,
,
由得,當時,
且
即不等式組的解:
所以;
(3)假設(shè)存在,設(shè)點,使,
由(2):斜率為的直線過點,直線方程為,代入,
,即有兩個不等正根,
,
,所以,
,對恒成立,
所以,解得,即,
當直線斜率不存在時,直線方程,此時,
,仍然滿足,
所以這樣的點存在,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)平臺從購買該平臺某課程的客戶中,隨機抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學(xué)時數(shù),客戶性別等進行統(tǒng)計,整理得到如表:
學(xué)時數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計男性客戶購買該課程學(xué)時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結(jié)果保留小數(shù)點后兩位);
(2)從這100位客戶中,對購買該課程學(xué)時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機抽取7人,再從這7人中隨機抽取2人,求這2人購買的學(xué)時數(shù)都不低于15的概率.
(3)將購買該課程達到25學(xué)時及以上者視為“十分愛好該課程者”,25學(xué)時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認為“十分愛好該課程者”與性別有關(guān)?
非十分愛好該課程者 | 十分愛好該課程者 | 合計 | |
男性 | |||
女性 | |||
合計 | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓:上的動點到一個焦點的最遠距離與最近距離分別是與,的左頂點為與軸平行的直線與橢圓交于、兩點,過、兩點且分別與直線、垂直的直線相交于點.
(1)求橢圓的標準方程;
(2)證明點在一條定直線上運動,并求出該直線的方程;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了組建一支業(yè)余足球隊,在高一年級隨機選取50名男生測量身高,發(fā)現(xiàn)被測男生的身高全部在到之間,將測量結(jié)果按如下方式分成六組:第1組,第2組,…,第6組,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.
(1)若學(xué)校要從中選1名男生擔(dān)任足球隊長,求被選取的男生恰好在第5組或第6組的概率;
(2)試估計該校高一年級全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)與中位數(shù);
(3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門員,求選取的兩人中最多有1名男生來自第5組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年“雙十一”全網(wǎng)銷售額達億元,相當于全國人均消費元,同比增長,監(jiān)測參與“雙十一”狂歡大促銷的家電商平臺有天貓、京東、蘇寧易購、網(wǎng)易考拉在內(nèi)的綜合性平臺,有拼多多等社交電商平臺,有敦煌網(wǎng)、速賣通等出口電商平臺.某大學(xué)學(xué)生社團在本校名大一學(xué)生中采用男女分層抽樣,分別隨機調(diào)查了若干個男生和個女生的網(wǎng)購消費情況,制作出男生的頻率分布表、直方圖(部分)和女生的莖葉圖如下:
男生直方圖
分組(百元) | 男生人數(shù) | 頻率 |
合計 |
女生莖葉圖
(1)請完成頻率分布表的三個空格,并估計該校男生網(wǎng)購金額的中位數(shù)(單位:元,精確到個位).
(2)若網(wǎng)購為全國人均消費的三倍以上稱為“剁手黨”,估計該校大一學(xué)生中的“剁手黨”人數(shù)為多少?從抽樣數(shù)據(jù)中網(wǎng)購不足元的同學(xué)中隨機抽取人發(fā)放紀念品,則人都是女生的概率為多少?
(3)用頻率估計概率,從全市所有高校大一學(xué)生中隨機調(diào)查人,求其中“剁手黨”人數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面,為的中點,為等邊三角形,是棱上的一點,設(shè)(與不重合).
(1)若平面,求的值;
(2)當時,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,,點為線段上的動點,則下列結(jié)論正確的是( )
A.當時,三點共線
B.當時,
C.當時,平面
D.當時,平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com