11.${(2x-\frac{1}{x})^8}$的展開(kāi)式中x2的系數(shù)為( 。
A.-1792B.1792C.-448D.448

分析 在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于2,求出r的值,即可求得x2的系數(shù).

解答 解:${(2x-\frac{1}{x})^8}$的展開(kāi)式的通項(xiàng)公式為 Tr+1=${C}_{8}^{r}$•(-1)r•28-r•x8-2r,
令8-2r=2,求得r=3,可得展開(kāi)式中x2的系數(shù)為-25•${C}_{8}^{3}$=-1792,
故選:A.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若關(guān)于直線(xiàn)y=k(x一1)對(duì)稱(chēng)的兩點(diǎn)M,N均在圓C:(x+3)2+(y-4)2=16上,且直線(xiàn)MN與圓x2+y2=2相切,則直線(xiàn)MN的方程是y=x±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)>f′(x)tanx成立,則(  )
A.$\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$B.$f(1)>2f(\frac{π}{6})sin1$C.$\sqrt{2}f({\frac{π}{6}})<f({\frac{π}{4}})$D.$\sqrt{3}f({\frac{π}{6}})<f({\frac{π}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,已知a=4,c=3,cosA=-$\frac{1}{3}$.
(1)求角C的大小;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在半徑為r的圓周上任取兩點(diǎn)A,B,則|AB|≥r的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.有下列說(shuō)法:
①一支田徑隊(duì)有男女運(yùn)動(dòng)員98人,其中男運(yùn)動(dòng)員有56人.按男、女比例用分層抽樣的方法,從全體運(yùn)動(dòng)員中抽出一個(gè)容量為28的樣本,那么應(yīng)抽取女運(yùn)動(dòng)員人數(shù)是12人;
②采用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加活動(dòng),學(xué)號(hào)為5,27,38,49的同學(xué)均選中,則該班學(xué)生的人數(shù)為60人;
③廢品率x%和每噸生鐵成本y(元)之間的回歸直線(xiàn)方程為$\hat y=2x+256$,這表明廢品率每增加1%,生鐵成本大約增加258元;
④為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防作用”,利用2×2列聯(lián)表計(jì)算得K2的觀(guān)測(cè)值k≈3.918,經(jīng)查對(duì)臨界值表知P(K2≥3.841)≈0.05,由此,得出以下判斷:在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“這種血清能起到預(yù)防的作用”.
正確的有( 。
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知點(diǎn)P(2,1).
(1)求過(guò)P點(diǎn)與原點(diǎn)距離為2的直線(xiàn)l的方程;
(2)求過(guò)P點(diǎn)與原點(diǎn)距離最大的直線(xiàn)l的方程,最大距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如果U={1,2,3,4,5},M={1,2,3},N={x|4<x≤6},那么(∁UM)∩N等于(  )
A.B.{5}C.{1,3}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.我校某高一學(xué)生為了獲得華師一附中榮譽(yù)畢業(yè)證書(shū),在“體音美2+1+1項(xiàng)目”中學(xué)習(xí)游泳.他每次游泳測(cè)試達(dá)標(biāo)的概率都為60%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該同學(xué)三次測(cè)試恰有兩次達(dá)標(biāo)的概率:先由計(jì)算器產(chǎn)生0到9之間的整數(shù)隨機(jī)數(shù),指定1,2,3,4表示未達(dá)標(biāo),5,6,7,8,9,0表示達(dá)標(biāo);再以每三個(gè)隨機(jī)數(shù)為一組,代表三次測(cè)試的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
917   966   891   925   271   932   872   458   569   683
431   257   393   027   556   488   730   113   507   989
據(jù)此估計(jì),該同學(xué)三次測(cè)試恰有兩次達(dá)標(biāo)的概率為( 。
A.0.50B.0.40C.0.43D.0.48

查看答案和解析>>

同步練習(xí)冊(cè)答案