13.天氣預(yù)報(bào),端午節(jié)假期甲、乙、丙三地降雨的概率分別是0.9、0.8、0.75,若甲、乙、丙三地是否降雨相互之間沒有影響,則其中至少一個(gè)地方降雨的概率為(  )
A.0.015B.0.005C.0.985D.0.995

分析 求出甲、乙、丙三地都不降雨的概率,根據(jù)對(duì)立事件,求出至少一個(gè)地方降雨的概率即可.

解答 解:∵甲、乙、丙三地降雨的概率分別是0.9、0.8、0.75,
∴甲、乙、丙三地不降雨的概率分別是0.1、0.2、0.25,
甲、乙、丙三地都不降雨的概率是0.1×0.2×0.25=0.005,
故至少一個(gè)地方降雨的概率為1-0.005=0.995,
故選:D.

點(diǎn)評(píng) 本題考查了相互獨(dú)立事件,考查對(duì)立事件,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l交橢圓于A,B兩個(gè)不同點(diǎn).
(1)求橢圓的方程;   
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(x-a)2lnx(a為常數(shù)).
(Ⅰ)若f(x)在(1,f(1))處的切線與直線2x+2y-3=0垂直.
(。┣髮(shí)數(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x-1)的大。
(Ⅱ)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無極值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知X~B(n,0.5),且E(X)=16,則D(X)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)P(an,Sn)在函數(shù)f(x)=$\frac{1}{2}$x2+$\frac{1}{2}$x上,已知b1=1,3bn-2bn-1=0(n≥2,n∈N*),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)是否存在整數(shù)m,M,使得m<Tn<M對(duì)任意正整數(shù)n恒成立,且M-m=9,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.根據(jù)定積分的性質(zhì)和幾何意義,$\int_0^1$[$\sqrt{1-{{(x-1)}^2}}$-x]dx=$\frac{π-2}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=log2x,若f(x)的導(dǎo)數(shù)f′(x0)=1,則x0=( 。
A.2eB.e2C.log2eD.loge2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{({\frac{1}{3}})^x},x≤0\end{array}$,則f[f(${\frac{1}{4}}$)]的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的統(tǒng)計(jì)數(shù)據(jù)如表,
年 份2007200820092010201120122013
年份代號(hào)x1234567
y2.93.33.64.44.85.25.9
據(jù)此,我們得到y(tǒng)關(guān)于年份代號(hào)x的線性回歸方程:$\widehaty$=0.5$\widehatx$+2.3,則預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入等于6.8.

查看答案和解析>>

同步練習(xí)冊(cè)答案