3.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的統(tǒng)計數(shù)據(jù)如表,
年 份2007200820092010201120122013
年份代號x1234567
y2.93.33.64.44.85.25.9
據(jù)此,我們得到y(tǒng)關(guān)于年份代號x的線性回歸方程:$\widehaty$=0.5$\widehatx$+2.3,則預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入等于6.8.

分析 根據(jù)回歸方程,2015年對應(yīng)的年份代碼x=8,代入回歸方程求得y的值.

解答 解:由回歸方程$\widehaty$=0.5$\widehatx$+2.3,可知:2015年對應(yīng)的x=9時,y=6.8,
故答案為:6.8.

點評 本題考查回歸方程的應(yīng)用,計算簡單,找到2015年對應(yīng)的年份代號x的是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.天氣預(yù)報,端午節(jié)假期甲、乙、丙三地降雨的概率分別是0.9、0.8、0.75,若甲、乙、丙三地是否降雨相互之間沒有影響,則其中至少一個地方降雨的概率為( 。
A.0.015B.0.005C.0.985D.0.995

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,(2$\overrightarrow a$-3$\overrightarrow b$)•(2$\overrightarrow a$+$\overrightarrow b$)=9.
(1)求向量$\overrightarrow a$與$\overrightarrow b$的夾角θ;
(2)求|$\overrightarrow a$+$\overrightarrow b$|和cos<$\overrightarrow a$,$\overrightarrow a$+$\overrightarrow b$>的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax3+cx(a≠0,a∈R,c∈R),當x=1時,f(x)取得極值-2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值;
(3)若對任意x1、x2∈[-1,1],不等式|f(x1)-f(x2)|≤t恒成立,求實數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,a=$\sqrt{3}$.
(Ⅰ)求bcosC+ccosB的值;
(Ⅱ)若cosA=$\frac{1}{2}$,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y≤1}\\{x≥0}\\{y≥0}\end{array}\right.$,則ω=$\frac{4x+2y-16}{x-3}$的取值范圍是[5,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)y=3sin(2x+$\frac{π}{4}}$),x∈[0,$\frac{π}{2}}$]的單調(diào)增區(qū)間為[0,m],則實數(shù)m的值為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f(x)=$\frac{(x+2)^{2}+(sinx+3){x}^{2}}{{x}^{2}+1}$的最大值是M,最小值是m,則M+m=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,直三棱柱ABC-A1B1C1中,AB=AC=2,AA1=3,D為BC中點,
(Ⅰ)證明:A1C∥平面B1AD;
(Ⅱ)求二面角B1-AD-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案