函數(shù)f(x)=2cos2x-sin2x的最小正周期為( 。
A、2π
B、
π
2
C、π
D、4π
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)三角函數(shù)的恒等變換可得f(x)=
2
cos(2x+
π
4
)+1,再根據(jù)y=Acos(ωx+φ)的周期等于T=
ω
求得它的周期.
解答: 解:函數(shù)f(x)=2cos2x-sin2x=cos2x-sin2x+1=
2
cos(2x+
π
4
)+1
的最小正周期為
2
=π,
故選:C.
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,三角函數(shù)的周期性和求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(1,0))到直線ρ(3cosθ+4sinθ)=2的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點D(-2,4),E(-2,-2),F(xiàn)(5,5)都在圓C上.
(1)求圓C的方程;
(2)直線x-y+m=0與圓C交于A,B兩點,OA⊥OB時,求m值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+ax2+3x-9,已知f(x)在x=-3時取得極值,則a等于( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+x-b的零點x1∈(n,n+1)(n∈Z),其中常數(shù)a,b滿足2a=3,3b=2,則n等于( 。
A、-1B、-2C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖的程序框圖輸出的結(jié)果為i=
 
i+2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
2
+
3
5
( 。
A、綜合法
B、分析法
C、綜合法、分析法配合使用
D、間接證法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過A(-2,m),B(m,4)兩點的直線與直線y=
1
2
x垂直,則m的值為( 。
A、4B、-8C、-2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3x-2
的定義域為M,值域為N,則M∩N=( 。
A、M
B、(1,+∞)
C、(-∞,
2
3
D、N

查看答案和解析>>

同步練習(xí)冊答案